This theoretical work shows how the knowledge of the emulsion microscale, including drop stretching and orientation leads to a continuum description of emulsion flows. A first order small deformation theory is explored for describing the rheology of an emulsion of high viscosity drops undergoing unsteady shear flows. The stationary shape and the interfacial velocity of a drop are used in order to obtain the contribution of the drop to the effective stress tensor of the emulsion. A complex rheology including the nonlinear frequency response of the emulsion under oscillatory shear at arbitrary frequency forcing and strain amplitude is identified.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Edwards
, D. A.
, Brenner
, H.
, and Wasan
, T. D.
, 1991, Interfacial Transport Processes and Rheology
, Butterworth-Heinemann
, London
.2.
Stone
, H. A.
, 1994, Dynamics of Drop Deformation and Breakup in Viscous Fluids
, Annu. Rev. Fluid Mech.
, 26
, pp. 65
–102
.3.
Bird
, R. B.
, Armstrong
, R. C.
, and Hassaer
, O.
, 1987, Dynamic of Polymeric Liquids
, Wiley
, New York
, Vol. 1
.4.
Oliveira
, T. F.
, 2007, “Microhydrodynamics and Rheology of Emulsions
,” Ph.D. thesis, PUC-RJ 53 (in Portuguese), p. 189
.5.
Schowalter
, W. R.
, Chaffey
, C. E.
, and Brenner
, H.
, 1968, “Rheological Behavior of a Dilute Emulsion
,” J. Colloid Interface Sci.
, 26
, pp. 152
–160
.6.
Frankel
, N. A.
, and Acrivos
, A.
, 1970, “The Constitutive Equation for a Dilute Emulsion
,” J. Fluid Mech.
, 44
, pp. 65
–78
.7.
Barthés-Biesel
, D.
, and Acrivos
, A.
, 1973, The Rheology of Suspensions and its Relation to Phenomenological Theories for Non-Newtonian Fluids
, Int. J. Multiphase Flow
, 1
, pp. 1
–24
.8.
Barthés-Biesel
, D.
, and Acrivos
, A.
, 1973, “Deformation and Burst of a Liquid Droplet Freely Suspended in a Linear Field
,” J. Fluid Mech.
, 61
, pp. 1
–21
.9.
Rallison
, J. M.
, 1980, “Note on the Time Dependent Deformation of a Viscous Drop Which is Almost Spherical
,” J. Fluid Mech.
, 98
, pp. 625
–633
.10.
Vlahovska
, P.
, Blawzdziewicz
, J.
, and Loewenberg
, M.
, 2002, “Nonlinear Rheology of a Dilute Emulsion of Surfactant-Covered Spherical Drops in Time-Dependent Flows
,” J. Fluid Mech.
, 463
, pp. 1
–24
.11.
Vlahovska
, P.
, Blawzdziewicz
, J.
, and Loewenberg
, M.
, 2009, “Small-Deformation Theory for a Surfactant-Covered Drop in Linear Flows
,” J. Fluid Mech.
, 624
, pp. 293
–337
.12.
Vlahovska
, P.
, 2011, “On the Rheology of a Dilute Emulsion in a Uniform Electric Field
,” J. Fluid Mech.
, 670
, pp. 481
–503
.13.
Cavalo
, R.
, Guido
, S.
, and Simeone
, M.
, 2003, “Drop Deformation Under Small-Amplitude Oscillatory Shear
,” Rheol. Acta
, 42
, pp. 1
–9
.14.
Mo
, G.
, and Sangani
, A. S.
, 1994, “A Method for Computing Stokes flow Interactions Among Spherical Objects and its Application to Suspension of Drops and Porous Particles
,” Phys. Fluids
, 6
, pp. 1637
–1652
.15.
Li
, X.
, Zhou
, H.
, and Pozrikidis
C.
, 1995, “A Numerical Study of the Shearing Motion of Emulsions and Foams
,” J. Fluid Mech.
, 286
, pp. 379
–404
.16.
Zinchenko
, A. Z.
, Rother
, M. A.
, Davis
, R. H.
, 1997, “A Novel Boundary-Integral Algorithm for Viscous Interaction of Deformable Drops
,” Phys. Fluids
, 9
, pp. 1493
–1511
.17.
Bazhlekov
, I. B.
, Anderson
, P.D.
, and Meijer
, H.E.H.
, 2004, “Nonsingular Boundary Integral Method for Deformable Drops in Viscous Flows
,” Phys. Fluids
, 16
, pp. 1064
–1081
.18.
Loewenberg
, M.
, and Hinch
, E. J.
, 1996, Numerical Simulations of a Concentrated Emulsion in Shear Flow
, J. Fluid Mech.
, 321
, pp. 395
–419
.19.
Cunha
, F. R.
, Almeida
, M. H. P.
, and Loewenberg
, M.
, 2003, “Direct Numerical Simulations of Emulsion Flows
,” J. Braz. Soc. Mech. Sci. Eng.
, 25
, pp. 30
–40
.20.
Cunha
, F. R.
, Sousa
, and A. J.
, Loewenberg
, M.
, 2003, “A Mathematical Formulation of the Boundary Integral Equations for a Compressible Stokes Flow
,” Comput. Appl. Math.
, 22
, pp. 53
–73
.21.
Pozridikis
, C.
, 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow
, Cambridge University Press
, Cambridge
.22.
Leal
, L.G.
, 1992, Laminar Flow and Convective Transport Processes
, 6th ed., Butterworth-Heinemann
, London
.23.
Batchelor
G. K.
, 1970, Stress System in a Suspension of Force-Free Particles
,” J. Fluid Mech.
, 41
, pp. 545
–570
.24.
Cunha
, F. R.
, and Loewenberg
, M.
, 2003c, “A Study of Emulsion Expansion by a Boundary Integral Method
,” Mech. Res. Commun.
, 30
, pp. 639
–649
.25.
Mason
, T. G.
, Lacasse
, M. D.
, Grest
, G. S.
, Lavine
, D.
, Bibette
, J.
, and Weitz
, D. A.
, 1997, “Osmotic Pressure and Viscoelastic Shear Moduli of Concentrated Emulsions
,” Phys. Rev. E
, 56
(3
), pp. 3150
–3166
.26.
Lamb
, H.
, 1932, Hydrodynamics
, 6th ed., Cambridge University Press
, Cambridge
.27.
Taylor
, G. I.
, 1934, “The Formation of Emulsions in Definable Fields of Flow
,” Proc. R. Soc. London, Ser. A
, 146
, pp. 501
–523
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.