This theoretical work shows how the knowledge of the emulsion microscale, including drop stretching and orientation leads to a continuum description of emulsion flows. A first order small deformation theory is explored for describing the rheology of an emulsion of high viscosity drops undergoing unsteady shear flows. The stationary shape and the interfacial velocity of a drop are used in order to obtain the contribution of the drop to the effective stress tensor of the emulsion. A complex rheology including the nonlinear frequency response of the emulsion under oscillatory shear at arbitrary frequency forcing and strain amplitude is identified.

References

1.
Edwards
,
D. A.
,
Brenner
,
H.
, and
Wasan
,
T. D.
, 1991,
Interfacial Transport Processes and Rheology
,
Butterworth-Heinemann
,
London
.
2.
Stone
,
H. A.
, 1994,
Dynamics of Drop Deformation and Breakup in Viscous Fluids
,
Annu. Rev. Fluid Mech.
,
26
, pp.
65
102
.
3.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassaer
,
O.
, 1987,
Dynamic of Polymeric Liquids
,
Wiley
,
New York
, Vol.
1
.
4.
Oliveira
,
T. F.
, 2007, “
Microhydrodynamics and Rheology of Emulsions
,” Ph.D. thesis, PUC-RJ 53 (in Portuguese), p.
189
.
5.
Schowalter
,
W. R.
,
Chaffey
,
C. E.
, and
Brenner
,
H.
, 1968, “
Rheological Behavior of a Dilute Emulsion
,”
J. Colloid Interface Sci.
,
26
, pp.
152
160
.
6.
Frankel
,
N. A.
, and
Acrivos
,
A.
, 1970, “
The Constitutive Equation for a Dilute Emulsion
,”
J. Fluid Mech.
,
44
, pp.
65
78
.
7.
Barthés-Biesel
,
D.
, and
Acrivos
,
A.
, 1973,
The Rheology of Suspensions and its Relation to Phenomenological Theories for Non-Newtonian Fluids
,
Int. J. Multiphase Flow
,
1
, pp.
1
24
.
8.
Barthés-Biesel
,
D.
, and
Acrivos
,
A.
, 1973, “
Deformation and Burst of a Liquid Droplet Freely Suspended in a Linear Field
,”
J. Fluid Mech.
,
61
, pp.
1
21
.
9.
Rallison
,
J. M.
, 1980, “
Note on the Time Dependent Deformation of a Viscous Drop Which is Almost Spherical
,”
J. Fluid Mech.
,
98
, pp.
625
633
.
10.
Vlahovska
,
P.
,
Blawzdziewicz
,
J.
, and
Loewenberg
,
M.
, 2002, “
Nonlinear Rheology of a Dilute Emulsion of Surfactant-Covered Spherical Drops in Time-Dependent Flows
,”
J. Fluid Mech.
,
463
, pp.
1
24
.
11.
Vlahovska
,
P.
,
Blawzdziewicz
,
J.
, and
Loewenberg
,
M.
, 2009, “
Small-Deformation Theory for a Surfactant-Covered Drop in Linear Flows
,”
J. Fluid Mech.
,
624
, pp.
293
337
.
12.
Vlahovska
,
P.
, 2011, “
On the Rheology of a Dilute Emulsion in a Uniform Electric Field
,”
J. Fluid Mech.
,
670
, pp.
481
503
.
13.
Cavalo
,
R.
,
Guido
,
S.
, and
Simeone
,
M.
, 2003, “
Drop Deformation Under Small-Amplitude Oscillatory Shear
,”
Rheol. Acta
,
42
, pp.
1
9
.
14.
Mo
,
G.
, and
Sangani
,
A. S.
, 1994, “
A Method for Computing Stokes flow Interactions Among Spherical Objects and its Application to Suspension of Drops and Porous Particles
,”
Phys. Fluids
,
6
, pp.
1637
1652
.
15.
Li
,
X.
,
Zhou
,
H.
, and
Pozrikidis
C.
, 1995, “
A Numerical Study of the Shearing Motion of Emulsions and Foams
,”
J. Fluid Mech.
,
286
, pp.
379
404
.
16.
Zinchenko
,
A. Z.
,
Rother
,
M. A.
,
Davis
,
R. H.
, 1997, “
A Novel Boundary-Integral Algorithm for Viscous Interaction of Deformable Drops
,”
Phys. Fluids
,
9
,
pp. 1493
1511
.
17.
Bazhlekov
,
I. B.
,
Anderson
,
P.D.
, and
Meijer
,
H.E.H.
, 2004, “
Nonsingular Boundary Integral Method for Deformable Drops in Viscous Flows
,”
Phys. Fluids
,
16
, pp.
1064
1081
.
18.
Loewenberg
,
M.
, and
Hinch
,
E. J.
, 1996,
Numerical Simulations of a Concentrated Emulsion in Shear Flow
,
J. Fluid Mech.
,
321
, pp.
395
419
.
19.
Cunha
,
F. R.
,
Almeida
,
M. H. P.
, and
Loewenberg
,
M.
, 2003, “
Direct Numerical Simulations of Emulsion Flows
,”
J. Braz. Soc. Mech. Sci. Eng.
,
25
, pp.
30
40
.
20.
Cunha
,
F. R.
,
Sousa
, and
A. J.
,
Loewenberg
,
M.
, 2003, “
A Mathematical Formulation of the Boundary Integral Equations for a Compressible Stokes Flow
,”
Comput. Appl. Math.
,
22
, pp.
53
73
.
21.
Pozridikis
,
C.
, 1992,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
,
Cambridge University Press
,
Cambridge
.
22.
Leal
,
L.G.
, 1992,
Laminar Flow and Convective Transport Processes
, 6th ed.,
Butterworth-Heinemann
,
London
.
23.
Batchelor
G. K.
, 1970,
Stress System in a Suspension of Force-Free Particles
,”
J. Fluid Mech.
,
41
, pp.
545
570
.
24.
Cunha
,
F. R.
, and
Loewenberg
,
M.
, 2003c, “
A Study of Emulsion Expansion by a Boundary Integral Method
,”
Mech. Res. Commun.
,
30
, pp.
639
649
.
25.
Mason
,
T. G.
,
Lacasse
,
M. D.
,
Grest
,
G. S.
,
Lavine
,
D.
,
Bibette
,
J.
, and
Weitz
,
D. A.
, 1997, “
Osmotic Pressure and Viscoelastic Shear Moduli of Concentrated Emulsions
,”
Phys. Rev. E
,
56
(
3
), pp.
3150
3166
.
26.
Lamb
,
H.
, 1932,
Hydrodynamics
, 6th ed.,
Cambridge University Press
,
Cambridge
.
27.
Taylor
,
G. I.
, 1934, “
The Formation of Emulsions in Definable Fields of Flow
,”
Proc. R. Soc. London, Ser. A
,
146
, pp.
501
523
.
You do not currently have access to this content.