High intensity noise/impulse transmission through a bench model consisting of the simplified ear canal, eardrum, and middle ear cavity was investigated using the CFX/ANSYS software package with fluid-structure interactions. The nondimensional fluid-structure interaction parameter q and the dimensionless impulse were used to describe the interactions between the high intensity pressure impulse and eardrum or tympanic membrane (TM). We found that the pressure impulse was transmitted through the straight ear canal to the TM, and the reflected overpressure at the TM became slightly higher than double the incident pressure due to the dynamic pressure (shocks) effect. Deformation of the TM transmits the incident pressure impulse to the middle ear cavity. The pressure peak in the middle ear cavity is lower than the incident pressure. This pressure reduction through the TM was also observed in our experiments that have dimensions similar to the simulation bench model. We also found that the increase of the pressure ratio as a function of the incident pressure is slightly larger than the linear growth rate. The growth rate of the pressure ratio in this preliminary study suggests that the pressure increase in the middle ear cavity may become sufficiently high to induce auditory damage and injury depending on the intensity of the incident sound noise.

References

1.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061007
.10.1115/1.3118765
2.
Bass
,
C. R.
,
Panzer
,
M. B.
,
Rafaels
,
K. A.
,
Wood
,
G.
,
Shridharani
,
J.
, and
Capehart
,
B.
,
2012
, “
Brain Injuries From Blast
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
185
202
.10.1007/s10439-011-0424-0
3.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.10.1007/s10439-012-0519-2
4.
Mrena
,
R.
,
Paakkonen
,
R.
,
Back
,
L.
,
Pirvola
,
U.
, and
Ylikoski
,
J.
,
2004
, “
Otologic Consequences of Blast Exposure: A Finnish Case Study of a Shopping Mall Bomb Explosion
,”
Acta Otolaryngol.
,
124
(
8
), pp.
946
952
.10.1080/00016480310017045
5.
Steele
,
C. R.
, and
Taber
,
L. A.
,
1979
, “
Comparison of WKB Calculations and Experimental Results for 3-Dimensional Cochlear Models
,”
J. Acoust. Soc. Am.
,
65
(
4
), pp.
1007
1018
.10.1121/1.382570
6.
Cancelli
,
C.
,
Dangelo
,
S.
,
Masili
,
M.
, and
Malvano
,
R.
,
1985
, “
Experimental Results in a Physical Model of the Cochlea
,”
J. Fluid Mech.
,
153
, pp.
361
388
.10.1017/S002211208500129X
7.
Lechner
,
T. P.
,
1993
, “
A Hydromechanical Model of the Cochlea With Nonlinear Feedback Using PVF(2) Bending Transducers
,”
Hear. Res.
,
66
(
2
), pp.
202
212
.10.1016/0378-5955(93)90140-V
8.
Steele
,
C. R.
, and
Zais
,
J. G.
,
1985
, “
Effect of Coiling in a Cochlear Model
,”
J. Acoust. Soc. Am.
,
77
(
5
), pp.
1849
1852
.10.1121/1.391935
9.
Loh
,
C. H.
,
1983
, “
Multiple Scale Analysis of the Spirally Coiled Cochlea
,”
J. Acoust. Soc. Am.
,
74
, pp.
94
103
.10.1121/1.389622
10.
Koike
,
T.
,
Wada
,
H.
, and
Kobayashi
,
T.
,
2002
, “
Modeling of the Human Middle Ear Using the Finite-Element Method
,”
J. Acoust. Soc. Am.
,
111
(
3
), pp.
1306
1317
.10.1121/1.1451073
11.
Sun
,
Q.
,
Gan
,
R. Z.
,
Chang
,
K. H.
, and
Dormer
,
K. J.
,
2002
, “
Computer-Integrated Finite Element Modeling of Human Middle Ear
,”
Biomech. Model. Mechanobiol.
,
1
(
2
), pp.
109
122
.10.1007/s10237-002-0014-z
12.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
847
859
.10.1023/B:ABME.0000030260.22737.53
13.
Zhang
,
X. M.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
3024
3027
.10.1109/TBME.2011.2159714
14.
Gan
,
R. Z.
,
Reeves
,
B. P.
, and
Wang
,
X. L.
,
2007
, “
Modeling of Sound Transmission From Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2180
2195
.10.1007/s10439-007-9366-y
15.
Gan
,
R. Z.
,
Cheng
,
T.
,
Dai
,
C. K.
,
Yang
,
F.
, and
Wood
,
M. W.
,
2009
, “
Finite Element Modeling of Sound Transmission With Perforations of Tympanic Membrane
,”
J. Acoust. Soc. Am.
,
126
(
1
), pp.
243
253
.10.1121/1.3129129
16.
Taylor
,
G. I.
,
1963
,
The Pressure and Impulse of Submarine Explosion Waves on Plates
,
Cambridge University
,
Cambridge, UK
.
17.
Gan
,
R. Z.
, and
Wang
,
X. L.
,
2007
, “
Multifield Coupled Finite Element Analysis for Sound Transmission in Otitis Media With Effusion
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3527
3538
.10.1121/1.2793699
18.
Wever
,
E. G.
, and
Lawrence
,
M.
,
1982
,
Physiological Acoustics
,
Princeton University
,
Princeton, NJ
.
19.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
20.
ANSYS,
2010
, “
ANSYS CFX-Pre User's Guide
,” Canonsburg, PA.
21.
Wada
,
H.
,
Metoki
,
T.
, and
Kobayashi
,
T.
,
1992
, “
Analysis of Dynamic Behavior of Human Middle-Ear Using a Finite-Element Method
,”
J. Acoust. Soc. Am.
,
92
(
6
), pp.
3157
3168
.10.1121/1.404211
22.
Kirikae
,
I.
,
1960
,
The Structure and Function of the Middle Ear
,
University of Tokyo
,
Tokyo, Japan
.
23.
Von Bekesy
,
G.
,
1960
,
Experiments in Hearing
,
McGraw-Hill
,
New York
.
24.
Mays
,
G. C.
, and
Smith
,
P. D.
,
1995
,
Blast Effects on Buildings
,
Thomas Telford Publications
,
London
.
25.
Cheng
,
T.
,
Dai
,
C. K.
, and
Gan
,
R. Z.
,
2007
, “
Viscoelastic Properties of Human Tympanic Membrane
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
305
314
.10.1007/s10439-006-9227-0
26.
Luo
,
H. Y.
,
Dai
,
C. K.
,
Gan
,
R. Z.
, and
Lu
,
H. B.
,
2009
, “
Measurement of Young's Modulus of Human Tympanic Membrane at High Strain Rates
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
064501
.10.1115/1.3118770
27.
Krutzer
,
B.
,
Ros
,
M.
,
Smit
,
J.
, and
de Jong
,
W.
,
2011
, “
A Review of Synthetic Latices in Surgical Glove Use
,” http://www.kraton.com/products/cariflex/synthetic_latices.pdf
You do not currently have access to this content.