In CFD modeling, the most widely used Reynolds stress models is the Speziale, Sarkar, Gatski (SSG) model. The present formulation, though similar in structure to the SSG model, is a mathematical variation assuming homogeneity of turbulence and is an improved model for the slow pressure strain of turbulence. The basic thrust is that anisotropy of dissipation tensor is not negligible when compared to the anisotropy of turbulent kinetic energy and affects the slow pressure strain rate. After an exhaustive survey of the available experimental results on return to isotropy, graphical plots reveal that the model performs as good as the SSG model.

References

1.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
P.
,
1975
, “
Progress in the Development of Reynold's Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.10.1017/S0022112075001814
2.
Lumley
,
J. L.
,
1978
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
3.
Hanjalić
,
K.
,
Jakirlić
,
S.
, and
Hadžić
,
I.
,
1997
, “
Expanding the Limits of Equilibrium Second Moment Turbulence Closures
,”
Fluid Dyn. Res.
,
20
, pp.
25
41
.10.1016/S0169-5983(96)00043-3
4.
Sarkar
,
S.
, and
Speziale
,
C.
,
1990
, “
A Simple Non-Linear Model for Return to Isotropy in Turbulence
,”
Phys. Fluids A
,
2
, pp.
84
93
.10.1063/1.857694
5.
Uberoi
,
M. S.
,
1957
, “
Equipartition of Energy and Local Isotropy in Turbulent Flows
,”
J. Appl. Phys.
,
28
, pp.
1165
1170
.10.1063/1.1722600
6.
Taulbee
,
D. B.
,
1987
,
Engineering Turbulence Models, Advances in Turbulence
,
W. K.
George
and
R. E. A.
Arndt
, ed.,
Hemisphere
,
New York
.
7.
Rotta
,
J. C.
,
1951
, “
Statistische Theorie Nichtomogener Turbulentz
,”
Z. Phys.
,
129
, pp.
547
572
.10.1007/BF01330059
8.
Perot
,
B.
, and
Chartrand
,
C.
,
2005
, “
Modeling Return to Isotropy Using Kinetic Equations
,”
Phys. Fluids
,
17
, pp.
035101–18
.10.1063/1.1839153
9.
Le Penven
,
L.
,
Gence
,
J. N.
, and
Comte-Bellot
,
G.
,
1985
, “
On the Approach to Isotropy of Homogeneous Turbulence: Effect of the Partition of Kinetic Energy Among the Velocity Components
,”
Frontiers in Fluid Mechanics
,
Springer-Verlag
,
Berlin
, pp.
1
21
.
10.
Choi
,
K. S.
, and
Lumley
,
J. L.
,
1984
, “
Return to Isotropy of Homogeneous Turbulence Revisited
,”
Turbulence and Chaotic Phenomena in Fluids
, Vol.
1
,
T.
Tatsumi
, ed.,
North-Holland
,
Amsterdam
, pp.
267
272
.
11.
Choi
,
K.–S.
, and
Lumley
,
J. L.
,
2001
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
436
, pp.
59
84
.10.1017/S002211200100386X
12.
Warhaft
,
Z.
,
2000
, “
Passive Scalars in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
203
240
.10.1146/annurev.fluid.32.1.203
13.
Basara
,
B.
, and
Younis
,
B. A.
,
1995
, “
Prediction of Turbulent Flows in Dredged Trenches
,”
J. Hydraul. Res.
,
33
, pp.
813
824
.10.1080/00221689509498553
14.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.10.1017%2FS0022112091000101
15.
Gilbert
,
N.
, and
Kleiser
,
L.
,
1991
, “
Turbulence Model Testing With the Aid of Direct Numerical Simulation Results
,”
Proceedings of the Turbulent Shear Flows
, Vol.
8
, Paper No. 26–1.
You do not currently have access to this content.