In CFD modeling, the most widely used Reynolds stress models is the Speziale, Sarkar, Gatski (SSG) model. The present formulation, though similar in structure to the SSG model, is a mathematical variation assuming homogeneity of turbulence and is an improved model for the slow pressure strain of turbulence. The basic thrust is that anisotropy of dissipation tensor is not negligible when compared to the anisotropy of turbulent kinetic energy and affects the slow pressure strain rate. After an exhaustive survey of the available experimental results on return to isotropy, graphical plots reveal that the model performs as good as the SSG model.
Issue Section:
Technical Brief
References
1.
Launder
, B. E.
, Reece
, G. J.
, and Rodi
, P.
, 1975
, “Progress in the Development of Reynold's Stress Turbulence Closure
,” J. Fluid Mech.
, 68
, pp. 537
–566
.10.1017/S00221120750018142.
Lumley
, J. L.
, 1978
, “Computational Modeling of Turbulent Flows
,” Adv. Appl. Mech.
, 18
, pp. 123
–176
.3.
Hanjalić
, K.
, Jakirlić
, S.
, and Hadžić
, I.
, 1997
, “Expanding the Limits of Equilibrium Second Moment Turbulence Closures
,” Fluid Dyn. Res.
, 20
, pp. 25
–41
.10.1016/S0169-5983(96)00043-34.
Sarkar
, S.
, and Speziale
, C.
, 1990
, “A Simple Non-Linear Model for Return to Isotropy in Turbulence
,” Phys. Fluids A
, 2
, pp. 84
–93
.10.1063/1.8576945.
Uberoi
, M. S.
, 1957
, “Equipartition of Energy and Local Isotropy in Turbulent Flows
,” J. Appl. Phys.
, 28
, pp. 1165
–1170
.10.1063/1.17226006.
Taulbee
, D. B.
, 1987
, Engineering Turbulence Models, Advances in Turbulence
, W. K.
George
and R. E. A.
Arndt
, ed., Hemisphere
, New York
.7.
Rotta
, J. C.
, 1951
, “Statistische Theorie Nichtomogener Turbulentz
,” Z. Phys.
, 129
, pp. 547
–572
.10.1007/BF013300598.
Perot
, B.
, and Chartrand
, C.
, 2005
, “Modeling Return to Isotropy Using Kinetic Equations
,” Phys. Fluids
, 17
, pp. 035101–18
.10.1063/1.18391539.
Le Penven
, L.
, Gence
, J. N.
, and Comte-Bellot
, G.
, 1985
, “On the Approach to Isotropy of Homogeneous Turbulence: Effect of the Partition of Kinetic Energy Among the Velocity Components
,” Frontiers in Fluid Mechanics
, Springer-Verlag
, Berlin
, pp. 1
–21
.10.
Choi
, K. S.
, and Lumley
, J. L.
, 1984
, “Return to Isotropy of Homogeneous Turbulence Revisited
,” Turbulence and Chaotic Phenomena in Fluids
, Vol. 1
, T.
Tatsumi
, ed., North-Holland
, Amsterdam
, pp. 267
–272
.11.
Choi
, K.–S.
, and Lumley
, J. L.
, 2001
, “The Return to Isotropy of Homogeneous Turbulence
,” J. Fluid Mech.
, 436
, pp. 59
–84
.10.1017/S002211200100386X12.
Warhaft
, Z.
, 2000
, “Passive Scalars in Turbulent Flows
,” Annu. Rev. Fluid Mech.
, 32
, pp. 203
–240
.10.1146/annurev.fluid.32.1.20313.
Basara
, B.
, and Younis
, B. A.
, 1995
, “Prediction of Turbulent Flows in Dredged Trenches
,” J. Hydraul. Res.
, 33
, pp. 813
–824
.10.1080/0022168950949855314.
Speziale
, C. G.
, Sarkar
, S.
, and Gatski
, T. B.
, 1991
, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,” J. Fluid Mech.
, 227
, pp. 245
–272
.10.1017%2FS002211209100010115.
Gilbert
, N.
, and Kleiser
, L.
, 1991
, “Turbulence Model Testing With the Aid of Direct Numerical Simulation Results
,” Proceedings of the Turbulent Shear Flows
, Vol. 8
, Paper No. 26–1.Copyright © 2014 by ASME
You do not currently have access to this content.