The characteristics of flow instabilities as well as the cavitation phenomenon in a centrifugal pump operating at low flow rates were studied by experimental and numerical means, respectively. Specially, a three-dimensional (3D) numerical model of cavitation was applied to simulate the internal flow through the pump and suitably long portions of the inlet and outlet ducts. As expected, cavitation proved to occur over a wide range of low flow rates, producing a characteristic creeping shape of the head-drop curve and developing in the form of nonaxisymmetric cavities. As expected, the occurrence of these cavities, attached to the blade suction sides, was found to depend on the pump's flow coefficient and cavitation number. The experiments focused on the flow visualization of the internal flow patterns by means of high-speed digital movies and in the analysis of the inlet pressure pulsations near the impeller eye by means of fast response pressure transducers. The experimental results showed that the unsteady behavior of the internal flow in the centrifugal pump operating at low flow rates has the characteristics of a peculiar low-frequency oscillation. Meanwhile, under certain conditions, the low-frequency pressure fluctuations were closely correlated to the flow instabilities induced by the occurrence of cavitation phenomena at low flow rates. Finally, the hydraulic performances of the centrifugal pump predicted by numerical simulations were in good agreement with the corresponding experimental data.

References

1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI, Inc.
,
Norwich, CT
.
2.
Grist
,
E.
,
1998
,
Cavitation and the Centrifugal Pump
,
Taylor Francis
,
New York
.
3.
Hashimoto
,
T.
,
Yoshida
,
M.
, and
Watanabe
,
M.
,
1997
, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.10.2514/2.5210
4.
d'Agostino
,
L.
,
2007
, “
The Different Role of Cavitation on Rotordynamic Whirl Forces in Axial Inducers and Centrifugal Impellers
,”
Fluid Dynamics of Cavitation and Cavitating Turbopumps (Int. Centre for Mechanical Sciences)
,
L.
d'Agostino
and
M. V.
Salvetti
, eds.,
Springer
,
New York
, pp.
253
278
.
5.
Yoshida
,
Y.
,
Kazami
,
Y.
,
Nagaura
,
K.
,
Shimagaki
,
M.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2008
, “
Interaction Between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation
,”
Int. J. Rotating Mach.
, p.
218978
.10.1155/2008/218978
6.
Brennen
,
C. E.
,
2012
, “
A Review of the Dynamics of Cavitating Pumps
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
1
), p.
012001
.10.1088/1755-1315/15/1/012001
7.
Kim
,
J. H.
, and
Acosta
,
A. J.
,
1975
, “
Unsteady Flow in Cavitating Turbopumps
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
412
417
.10.1115/1.3448047
8.
d'Agostino
,
L.
, and
Acosta
,
A. J.
,
1983
, “
On the Design of Cavitation Susceptibility Meters
,”
Proceedings of the 20th American Towing Tank Conference
,
Hoboken, NJ
, Vol.
1
, pp.
307
350
.
9.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
, and
Cervone
,
A.
,
2008
, “
A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers
,”
Proceedings of The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
,
Honolulu, HI
, Vol.
12
, p.
20259
.
10.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of the Rotordynamic Forces on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101102
.10.1115/1.4005100
11.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.10.1115/1.4005257
12.
Pasini
,
A.
,
Torre
,
L.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Continuous Spectrum of the Rotordynamic Forces on a Four Bladed Inducer
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121101
.10.1115/1.4005258
13.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
,
Pace
,
G.
,
Miloro
,
P.
, and
d'Agostino
,
L.
,
2011
, “
Effect of Tip Clearance of the Performance of a Three-Bladed Axial Inducer
,”
AIAA J. Propul. Power
,
27
(
4
), pp.
890
898
.10.2514/1.B34067
14.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
,
Baccarella
,
D.
,
Cervone
,
A.
, and
Milani
,
A.
,
2008
, “
A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers: Comparison With Numerical Simulations
,”
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Hartford, CT
, p.
5119
.
15.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
. “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
, pp.
135
141
.10.1115/1.2910095
16.
Tsujimoto
,
Y.
,
2001
, “
Simple Rules for Cavitation Instabilities in Turbomachinery
,”
Invited Lecture, Proc. 2001 Symposium on Cavitation, CAV 2001
,
Pasadena, CA
.
17.
Yury
,
A.
,
Fujii
,
A.
, and
Tsujimoto
,
Y.
,
2004
, “
Rotating Choke in Cavitating Turbopump Inducer
,”
ASME J. Fluids Eng.
,
126
, pp.
87
93
.10.1115/1.1637926
18.
Huang
,
J. D.
,
Aoki
,
M.
, and
Zhang
,
J. T.
,
1998
. “
Alternate Blade Cavitation Inducer
,”
JSME Int. J. Ser. B
,
41
, pp.
1
6
.10.1299/jsmeb.41.1
19.
Watanabe
,
S.
,
Kamijo
,
K.
,
Sato
,
K.
, and
Tsujimoto
,
Y.
,
1999
, “
Analysis of Rotating Cavitation in a Finite Pitch Cascade Using a Closed Cavity Model and a Singularity Method
,”
ASME J. Fluids Eng.
,
121
, pp.
834
840
.10.1115/1.2823544
20.
Hofmann
,
M.
,
Stoffel
,
B.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2001
, “
Similarities and Geometrical Effects on Rotating Cavitation in Two Scaled Centrifugal Pumps
,”
Proc. 2001 Symposium on Cavitation, CAV 2001
,
Pasadena, CA
.
21.
Iga
,
Y.
,
Hiranuma
,
M.
,
Yoshida
,
Y.
, and
Ikohagi
,
T.
,
2008
, “
Numerical Analysis of Cavitation Instabilities and the Suppression in Cascade
,”
J. Environ. Eng.
,
3
(
2
), pp.
240
249
.10.1299/jee.3.240
22.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
122
, pp.
156
163
.10.1115/1.483238
23.
Horiguchi
,
H.
,
Arai
,
S.
,
Fukutomi
,
J.
,
Nakase
,
Y.
, and
Tsujimoto
,
Y.
,
2004
, “
Quasi-Three-Dimensional Analysis of Cavitation in an Inducer
,”
ASME J. Fluids Eng.
,
126
, pp.
709
715
.10.1115/1.1789526
24.
Kang
,
D.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2009
, “
Cause of Cavitation Instabilities in Three Dimensional Inducer
,”
Int. J. Fluid Mach. Syst.
,
2
(
3
), pp.
206
214
.10.5293/IJFMS.2009.2.3.206
25.
Jafarzadeh
,
B.
,
Hajari
,
A.
,
Alishahi
,
M. M.
, and
Akbari
,
M. H.
,
2011
, “
The Flow Simulation of a Low-Specific-Speed High-Speed Centrifugal Pump
,”
Appl. Math. Model.
,
35
, pp.
242
249
.10.1016/j.apm.2010.05.021
26.
Goncalves
,
E.
, and
Fortes Patella
,
R.
,
2009
, “
Numerical Simulation of Cavitating Flows With Homogeneous Models
,”
Comput. Fluids
,
38
(
9
), pp.
1682
1696
.10.1016/j.compfluid.2009.03.001
27.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
28.
ANSYS Inc.
,
2012
, Theory Reference, ANSYS Inc.
29.
Yang
,
S.
,
Kong
,
F.
,
Qu
,
X.
, and
Jiang
,
W.
,
2012
, “
Influence of Blade Number on the Performance and Pressure Pulsations in a Pump Used as a Turbine
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
124503
.10.1115/1.4007810
30.
Zhou
,
L.
,
Shi
,
W.
,
Lu
,
W.
,
Hu
,
B.
, and
Wu
,
S.
,
2012
, “
Numerical Investigations and Performance Experiments of a Deep-Well Centrifugal Pump With Different Diffusers
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071102
.10.1115/1.4006676
31.
Yuan
,
J. P.
,
Fu
,
Y. X.
, and
Yuan
,
S. Q.
,
2012
, “
A Study of Cavitation Flow in a Centrifugal Pump at Part Load Conditions Based on Numerical Analysis
,”
Proceedings of
ASME
Fluids Engineering Division Summer Meeting (FEDSM2012), Rio Grande,
Puerto Rico
, July 8–12, Vol.
2
, pp.
193
202
.10.1115/FEDSM2012-72153
32.
Tang
,
F.
, and
Li
,
J. W.
,
2010
, “
Numerical Simulation of Rotating Cavitation in a Liquid Hydrogen Pump Inducer
,”
Proceedings of the 13th Asian Congress of Fluid Mechanics
,
Dhaka, Bangladesh
.
33.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
34.
Gerber
,
A. G.
,
2002
, “
A CFD Model for Devices Operating Under Extensive Cavitation Conditions
,” IMECE 2002, New Orleans, LA.
35.
Grotjans
,
H.
, and
Menter
,
F. R.
,
1998
, “
Wall Function for General Application CFD Codes
,”
ECCOMAS 98
, Proceedings of the 4th European Computational Fluid Dynamics Conference, John Wiley & Sons, pp. 1112–1117.
36.
Shen
,
Y.
, and
Dimotakis
,
P.
,
1989
, “
The Influence of Surface Cavitation on Hydrodynamic Forces
,”
Proc. 22nd ATTC
,
St. Johns, Canada
, pp.
44
53
.
37.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
, pp.
356
362
.10.1115/1.1457451
38.
Hofmann
,
M.
,
Stoffel
,
B.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2001
, “
Similarities and Geometrical Effects on Rotating Cavitation in Two Scaled Centrifugal Pumps
,”
Proceedings of the 4th International Symposium on Cavitation
,
Pasadena, CA
.
39.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2003
, “
Unsteady PIV Flow Field Analysis of a Centrifugal Pump Impeller Under Rotating Cavitation
,”
Proceedings of CAV2003
, Boulder, CO, July 8–12, pp.
1
8
.
40.
Tan
,
D. Y.
,
Miorini
,
R. L.
,
Keller
,
J.
, and
Katz
,
J.
,
2012
, “
Flow Visualization Using Cavitation Within Blade Passage of an Axial Waterjet Pump Rotor
,”
Proceedings of
ASME
Fluids Engineering Division Summer Meeting (FEDSM2012), Rio Grande,
Puerto Rico
, July 8–12, Vol.
1
, pp.
395
404
.10.1115/FEDSM2012-72108
41.
Pouffary
,
B.
,
Patella
,
R.
,
Rebound
,
J.
, and
Lambert
,
P.
,
2008
, “
Numerical Analysis of Cavitation Instabilities in Inducer Blade Cascade
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041302
.10.1115/1.2903823
42.
ISO
,
1999
, “
ISO 9906 Rotordynamic Pumps—Hydraulic Performance Acceptance Tests—Grades 1 and 2
,” International Standardization Organization, Geneva, Switzerland.
You do not currently have access to this content.