A full-scale Francis turbine has been experimentally investigated over its full range of operation to detect draft tube swirling flows and cavitation. The unit is of interest due to the presence of severe pressure fluctuations at part load and of advanced blade suction-side cavitation erosion. Moreover, the turbine has a particular combination of guide vanes (20) to runner blades (15) that makes it prone to significant rotor-stator interaction (RSI). For that, a complete measurement system of dynamic pressures, temperatures, vibrations, and acoustic emissions has been setup with the corresponding transducers mounted at selected sensitive locations. The experiments have comprised an efficiency measurement, a signal transmissibility evaluation, and the recording of the raw signals at high sampling rates. Signal processing methods for demodulation, peak power estimation, and cross correlation have also been applied. As a result, draft tube pressure fluctuations have been detected around the Rheingans frequency for low loads and at 4% of the rotating frequency for high loads. Moreover, maximum turbine guide bearing acoustic emissions have been measured at full load with amplitude modulations at both the guide vane passing frequency and the draft tube surge frequency.

References

1.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
,
London
.
2.
Cassidy
,
J. J.
, and
Falvey
,
H. T.
,
1970
, “
Frequency and Amplitude of Pressure Surges Generated by Swirling Flows
,”
Proc. 5th Symposium of IAHR Section Hydraulic Machinery, Equipment, and Cavitation
,
Stockholm, Sweden
, Paper No. E1.
3.
Nishi
,
M.
,
Kubota
,
T.
,
Matsunaga
,
S.
, and
Senoo
,
Y.
,
1984
, “
Surging Characteristics of Conical and Elbow Type Draft Tubes
,”
Proc. 12th IAHR Symposium on Hydraulic Machinery and System
,
Stirling, UK
, pp.
272
283
.
4.
Nishi
,
M.
,
Matsunaga
,
S.
,
Kubota
,
T.
, and
Senoo
,
Y.
,
1982
, “
Flow Regimes in an Elbow-Type Draft Tube
,”
Proc. 11th IAHR Symposium on Hydraulic Machinery and System
,
Amsterdam, Netherlands
, Paper No. 38, pp.
1
13
.
5.
Nishi
,
M.
,
Wang
,
X.
,
Okamoto
,
M.
, and
Matsunaga
,
S.
,
1994
, “
Further Investigation on the Pressure Fluctuations Caused by Cavitated Vortex Rope in an Elbow Draft Tube
,”
ASME Symposium on Cavitation and Gas Fluid Flow Machinery and Devices
, FED-Vol.
190
, pp.
63
70
.
6.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammit
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
7.
Hammit
,
F. G.
,
1979
, “
Cavitation Erosion: The State of the Art and Predicting Capability
,”
Appl. Mech. Rev.
,
32
(
6
), pp.
665
675
.
8.
Arndt
,
R. E. A.
,
1981
, “
Recent Advances in Cavitation Research
,”
Advances in Hydroscience
, Vol.
12
,
Academic
,
New York
, pp.
1
72
.
9.
Avellan
,
F.
, and
Dupont
,
P.
,
1988
, “
Cavitation Erosion of the Hydraulic Machines: Generation and Dynamics of Erosive Cavities
,”
Proc. 14th IAHR Symposium
,
Trondheim, Norway
, pp.
725
738
.
10.
Li
,
S. C.
, ed.,
2000
,
Cavitation of Hydraulic Machinery
, Vol.
1
,
Imperial College
,
London
.
11.
Kumar
,
P.
, and
Saini
,
R. P.
,
2010
, “
Study of Cavitation in Hydro Turbines—A Review
,”
Renew. Sustain. Energy Rev.
,
14
(
1
), pp.
374
383
.10.1016/j.rser.2009.07.024
12.
Kemp
,
N. H.
, and
Sears
,
W. R.
,
1953
, “
Aerodynamic Interference Between Moving Blade Rows
,”
AIAA J. Aeronaut. Sci.
,
20
, pp.
585
597
.10.2514/8.2758
13.
Tanaka
,
H.
,
1990
, “
Vibration Behaviour and Dynamic Stress of Runners of Very High Head Reversible Pump-Turbines
,”
Proc. 15th IAHR Symposium
,
Belgrade, Yugoslavia
.
14.
Blanc-Coquand
,
R.
,
Lavigne
,
S.
, and
Deniau
,
J.-L.
,
2000
, “
Experimental and Numerical Study of Pressure Fluctuations in High Head Pump-Turbine
,”
Proc. XX IAHR Symposium on Hydraulic Machinery and Systems
,
Charlotte, NC
.
15.
Ciocan
,
G. D.
, and
Kueny
,
J. L.
,
2006
, “
Experimental Analysis of Rotor Stator Interaction in a Pump-Turbine
,”
Proc. XXIII IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama, Japan
.
16.
Farhat
,
M.
,
Avellan
,
F.
, and
Seidel
,
U.
,
2002
, “
Pressure Fluctuation Measurements in Hydro Turbine Models
,”
Proc. 9th ISROMAC International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
.
17.
Seidel
,
U.
,
Hübner
,
B.
,
Löfflad
,
J.
, and
Faigle
,
P.
,
2012
, “
Evaluation of RSI-Induced Stresses in Francis Runners
,”
IOP Conf. Series: Earth Environ. Sci.
,
15
, p.
052010
.10.1088/1755-1315/15/5/052010
18.
Rheingans
,
W. J.
,
1940
, “
Power Swings in Hydroelectric Power Plants
,”
Trans. ASME
,
62
(
3
), pp.
171
184
.
19.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
, pp.
983
1007
.10.1016/j.ymssp.2004.08.006
20.
Farhat
,
M.
,
Bourdon
,
P.
,
Lavigne
,
P.
, and
Simoneau
,
R.
,
1997
, “
The Hydrodynamic Aggressiveness of Cavitating Flows in Hydro Turbines
,”
ASME Fluids Engineering Division Summer Meeting, FEDSM’97
,
Vancouver, Canada
, June 22–26.
21.
Escaler
,
X.
,
Egusquiza
,
E.
,
Mebarki
,
T.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2002
, “
Cavitation Detection and Erosion Prediction in Hydro Turbines
,”
Proc. 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
.
22.
Escaler
,
X.
,
Farhat
,
M.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Dynamics and Intensity of Erosive Partial Cavitation
,”
ASME J. Fluids Eng.
,
129
(7), pp.
886
893
.10.1115/1.2742748
23.
International Standard
,
1991
, “Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-turbines,” Report No. IEC 60041.
24.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
6th International Conference on Hydraulic Machinery and Hydrodynamics
,
Timisoara, Romania
, October 21–22.
25.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Anton
,
I.
, and
Bernard
,
S.
,
2003
, “
Numerical Investigation of 3D Cavitating Flow in Francis Turbines
,”
Conference on Modeling Fluid Flow (CMFF’03), The 12th International Conference on Fluid Flow Technologies
,
Budapest, Hungary
.
26.
Escaler
,
X.
,
Farhat
,
M.
,
Ausoni
,
P.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2006
, “
Cavitation Monitoring of Hydroturbines: Tests in a Francis Turbine Model
,”
Proc. 6th International Symposium on Cavitation CAV2006
,
Wageningen, The Netherlands
.
27.
Escaler
,
X.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Egusquiza
,
E.
,
2003
, “
Cavitation Erosion Tests on a 2D Hydrofoil Using Surface-Mounted Obstacles
,”
Wear
,
254–256
(
5–6
), pp.
441
449
.10.1016/S0043-1648(03)00261-8
28.
Escaler
,
X.
,
Dupont
,
P.
, and
Avellan
,
F.
,
1999
, “
Experimental Investigation on Forces due to Vortex Cavitation Collapse for Different Materials
,”
Wear
,
233–235
, pp.
65
74
.10.1016/S0043-1648(99)00197-0
29.
Franc
,
J.-P.
,
2009
, “
Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials
,”
ASME J. Fluids Eng.
,
131
(
2
) p. 021303.10.1115/1.3063646
30.
Franc
,
J.-P.
,
Karimi
,
A.
,
Chahine
,
G. L.
, and
Riondet
,
M.
,
2011
, “
Impact Load Measurements in an Erosive Cavitating Flow
,”
ASME J. Fluids Eng.
,
133
(
12
) p. 121301.10.1115/1.4005342
31.
Kim
,
K.-H.
,
Chahine
,
G.
,
Franc
,
J.-P.
,
Karimi
,
A.
,
2014
,
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (Fluid Mechanics and Its Applications)
, Vol.
106
,
Springer
,
New York
.
You do not currently have access to this content.