Abstract

The following current issues in verification and validation (V&V) are discussed: probability bounds analysis (PBA) versus the traditional probability distribution function (PDF) approach as used in the ANSI Standard document ASME V&V 20-2009; strict frequentist versus Bayesian approaches; model form uncertainty (and confusion) in prediction versus validation; Popper's philosophical falsificationism versus common sense; climate model trend validations versus climate change deniers; and V&V state of the art versus practice. Also, the many fundamental contributions to modern V&V practice in the history of the ASME Fluids Engineering Division and the Journal of Fluids Engineering (JFE) are described.

References

1.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Albuquerque,
NM
.
2.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
, Albuquerque,
NM
.
3.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
4.
ASME Committee V&V 20
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” ASME, New York.
5.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties in CFD Code Validation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
795
803
.
6.
ASME Committee PTC-60
,
2006
, “
ASME Guide on Verification and Validation in Computational Solid Mechanics
,” Dec. 29, ASME, New York.
7.
Dowding
,
K.
,
2016
, personal communication, May 27.
8.
McGrayne
,
S. B.
,
2011
,
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant From Two Centuries of Controversy
,
Yale University Press
, New Haven, CT. (Review by A. I. Dale in Notices of the AMS, Apr.
2001
, pp.
657
660
.)
9.
Oden
,
J. T.
,
Babuska
,
I.
, and
Faghihi
,
D.
,
2004
, “
Predictive Computational Science: Computer Predictions in the Presence of Uncertainty
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
, Hoboken, NJ.
10.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
11.
von Mises
,
R.
,
1957
,
Probability, Statistics and Truth
, 2nd Revised English ed.,
Dover
,
New York
.
12.
Choudhary
,
A.
,
Voyles
, I
. T.
,
Roy
,
C. J.
,
Oberkampf
,
W. L.
, and
Patil
,
M.
,
2016
, “
Probability Bounds Analysis Applied to the Sandia Verification and Validation Challenge Problem
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
1
(
1
), p.
011003
.
13.
Roy
,
C. J.
, and
Balch
,
M. S.
,
2012
, “
A Holistic Approach to Uncertainty Quantification With Application to Supersonic Nozzle Thrust
,”
Int. J. Uncertainty Quantif.
,
2
(
4
), pp.
363
381
.
14.
Knapp
,
C. F.
, and
Roache
,
P. J.
,
1968
, “
A Combined Visual and Hot-Wire Anemometer Investigation of Boundary Layer Transition
,”
AIAA J.
,
6
(
1
), pp.
29
36
.
15.
Eça
,
L.
, and
Hoekstra
,
M.
, eds.,
2008
, Proceedings: Third Workshop on CFD Uncertainty Analysis, Instituto Superior Técnico, Lisbon, Portugal, Oct. 23–24.
16.
Roache
,
P. J.
,
2012
,
A Defense of Computational Physics
, Amazon Paperback or Kindle Edition,
Hermosa Publishers
, Albuquerque,
NM
.
17.
Konikow
,
L. F.
, and
Bredehoeft
,
J. D.
,
1992
, “
Groundwater Models Cannot be Validated
,”
Adv. Water Resour.
,
15
(
1
), pp.
75
83
.
18.
Oreskes
,
N.
,
Shrader-Frechette
,
K.
, and
Belitz
,
K.
,
1994
, “
Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences
,”
Science
,
263
(
5147
), pp.
641
646
.
19.
Hansson
,
S. O.
,
2006
, “
Falsificationism Falsified
,”
Found. Sci.
,
11
(
3
), pp.
275
286
.
20.
Sumner
,
T.
,
2016
,
Changing Climate: 10 Years After an Inconvenient Truth
,” Science News Magazine, Apr. 16, 2016, pp.
22
29
.
21.
Crystal Cruises,
2016
, “The Northwest Passage,” http://www.crystalcruises.com/northwest-passage-cruise/northwest-passage--6319, Crystal Cruises, Los Angeles, CA.
22.
Oreskes
,
N.
, and
Conway
,
E. M.
,
2010
,
Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues From Tobacco Smoke to Global Warming
,
Bloomsbury
, New York.
23.
Tzu
,
L.
,
1972
,
Tao Te Ching
, Vol.
32
, (translated by
G.-F.
Feng
and
J.
English
),
Vintage Books
,
Random House, New York
.
24.
Roache
,
P. J.
,
Ghia
,
K.
, and
White
,
F.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.
25.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
26.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
114
(
1
), pp.
4
10
.
27.
Roache
,
P. J.
,
1993
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
Quantification of Uncertainty in Computational Fluid Dynamics, ASME Fluids Engineering Division Summer Meeting
, Washington, DC, I. Celik, C. J. Chen, P. J. Roache, and G. Scheurer, eds., June 20–24, 1993, ASME FED-Vol. 158, pp.
109
120
.
28.
Celik
,
I.
,
Chen
,
C. J.
,
Roache
,
P. J.
, and
Scheurer
,
G.
, eds.,
1993
, Proceedings: Symposium on Quantification of Uncertainty in Computational Fluid Dynamics, ASME, New York, FED-Vol. 158.
29.
Cadafalch
,
J.
,
Pérez-Segarra
,
C. C.
,
Cónsul
,
R.
, and
Oliva
,
A.
,
2002
, “
Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
11
21
.
30.
Roache
,
P. J.
,
2003
, “
Conservatism of the GCI in Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
731
732
.
31.
Roache
,
P. J.
,
2008
, “
Perspective: Validation—What Does It Mean?
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
034503
.
You do not currently have access to this content.