Linear eddy-viscosity Reynolds-Averaged Navier–Stokes (RANS) turbulence models are based on the Boussinesq approximation that asserts the Reynolds stresses to be linearly dependent on the mean strain rate. Using the Boussinesq approximation for the Reynolds stress yields a production term in the turbulent kinetic energy equation that is proportional to the square of the magnitude of the strain rate tensor. For some flows, this relation to the strain causes overproduction of turbulence. Widely used ad hoc modifications of the production term using vorticity lead to an inconsistent energy balance in the mean flow kinetic energy equation, violating the energy conservation. In this note, how to obtain a consistent RANS framework for a given production term modification is shown.

References

1.
Durbin
,
P. A.
,
1996
, “
On the k-Epsilon Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.
2.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2014
, “
On the Realizability of Pressure-Strain Closures
,”
J. Fluid Mech.
,
755
, pp.
535
560
.
3.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
4.
Shih
,
T. H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
,
1995
, “
A New Reynolds Stress Algebraic Equation Model
,”
Comput. Methods Appl. Mech. Eng.
,
125
(
1–4
), pp.
287
302
.
5.
Boussinesq
,
J.
,
1877
,
Essai sur la Théorie des Eaux Courantes Mémoires présentés par divers savants à l'Académie des Sciences
, Vol.
23
, pp.
1
680
.
6.
Durbin
,
P. A.
, and
Reif
,
B. A. P.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
, 2nd ed.,
John Wiley & Sons Ltd.
,
West Sussex, UK
.
7.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-Omega Turbulence Models for Aerodynamic Flows
,” Report No. NASA TM 103975.
8.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, pp.
10.4.1
10.4.6
.
9.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
10.
Rodi
,
W.
,
1997
, “
Comparison of LES and RANS Calculations of the Flow Around Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
69
, pp.
55
75
.
11.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
12.
Bush
,
R. H.
,
2014
, “
Turbulence Model Extension for Low Speed Thermal Shear Layers
,”
AIAA
Paper No. 2014-2086.
You do not currently have access to this content.