This paper presents an experimental study of flow over a square cylinder oscillating in transverse direction. The Reynolds number selected for present study is 485. Limited study has also been made for two other Reynolds numbers, namely, 295 and 775. The objective of the present study is to modify the near-wake flow structure using actuation of the cylinder for possible reduction in drag force. Transverse oscillations to the cylinder are provided using electromagnetic actuators. The flow field is investigated using two-dimensional (2D)-particle image velocimetry (PIV) system, hotwire anemometer (HWA), as well as flow visualization techniques. The effect of oscillation frequency and the amplitude on parameters like Strouhal number, drag coefficient, recirculation length, power spectrum, and Reynolds stress are studied. It is observed that the recirculation length is reduced significantly with increase in forcing frequency, and consequently drag coefficient is also reduced. For a constant forcing frequency, the vortex strength is reduced with the increase in the amplitude. Further, variation of instantaneous spanwise vorticity shows that separated shear length decreases with increase in forcing frequency. As a result, vortices are moved closer to the cylinder. These phenomena affect the forces acting on the cylinder. Lock-on is also observed at a frequency close to the vortex shedding frequency of the stationary cylinder.

References

1.
Ren
,
H.
, and
Wu
,
Y.
,
2011
, “
Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps
,”
Phys. Fluids
,
23
(
4
), p.
045102
.
2.
Wu
,
Y.
, and
Ren
,
H.
,
2013
, “
On the Impacts of Coarse-Scale Models of Realistic Roughness on a Forward-Facing Step Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
40
, pp.
15
31
.
3.
Wu
,
Y.
,
Ren
,
H.
, and
Tang
,
H.
,
2013
, “
Turbulent Flow Over a Rough Backward-Facing Step
,”
Int. J. Heat Fluid Flow
,
44
, pp.
155
169
.
4.
Devenport
,
W. J.
, and
Sutton
,
E. P.
,
1993
, “
An Experimental Study of Two Flows Through an Axisymmetric Sudden Expansions
,”
Exp. Fluids
,
14
(
6
), pp.
423
432
.
5.
Dutta
,
S.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2007
, “
Sensitivity of a Square Cylinder Wake to Forced Oscillations
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
852
870
.
6.
Fujisawa
,
N.
, and
Takeda
,
G.
,
2003
, “
Flow Control Around a Circular Cylinder by Internal Acoustic Excitation
,”
J. Fluids Struct.
,
17
(
7
), pp.
903
913
.
7.
Hyun
,
K. T.
, and
Chun
,
C. H.
,
2003
, “
The Wake Flow Control Behind a Circular Cylinder Using Ion Wind
,”
Exp. Fluids
,
35
(
6
), pp.
541
552
.
8.
Lee
,
S. J.
, and
Lee
,
J. Y.
,
2006
, “
Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
22
(
8
), pp.
1097
1112
.
9.
Luo
,
S. C.
,
Duong
,
T. T. L.
, and
Chew
,
Y. T.
,
2009
, “
Flow Separation of a Rotating Cylinder
,”
IUTAM Symposium on Unsteady Separated Flows and Their Control
(IUTAM Book Series, Vol.
14
),
Springer
,
The Netherlands
, pp.
487
492
.
10.
Beaudoin
,
J. F.
,
Cadot
,
O.
,
Aider
,
J. L.
, and
Wesfreid
,
J. E.
,
2006
, “
Drag Reduction of a Bluff Body Using Adaptive Control Methods
,”
Phys. Fluids
,
18
(
8
), p.
085107
.
11.
Kozlov
,
A. V.
, and
Thomas
,
F. O.
,
2011
, “
Plasma Flow Control of Cylinders in a Tandem Configuration
,”
AIAA J.
,
49
(
10
), pp.
2183
2193
.
12.
Islem
,
B.
, and
Adel
,
B.
,
2012
, “
Contribution to the Study of a Flow Controlled by a Synthetic Jet
,”
Appl. Mech. Mater.
,
152–154
, pp.
1522
1525
.
13.
Tanida
,
Y.
,
Okajima
,
A.
, and
Watanabe
,
Y.
,
1973
, “
Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake
,”
J. Fluid Mech.
,
61
(
4
), pp.
769
784
.
14.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
,
1976
, “
Vortex Shedding From a Cylinder Vibrating in Line With an Incident Uniform Flow
,”
J. Fluid Mech.
,
75
(
2
), pp.
257
271
.
15.
Griffin
,
O. M.
, and
Hall
,
M. S.
,
1991
, “
Review—Vortex Shedding Lock-On and Flow Control in Bluff Body Wakes
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
526
537
.
16.
Sarpkaya
,
T.
,
1979
, “
Vortex-Induced Oscillations: A Selective Review
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
241
258
.
17.
Karanth
,
D.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1995
, “
Computational Study of Flow Past a Cylinder With Combined In-Line and Transverse Oscillation
,”
Comput. Mech.
,
16
(
1
), pp.
1
10
.
18.
Zdravkovich
,
M. M.
,
1982
, “
Modification of Vortex Shedding in the Synchronization Range
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
513
517
.
19.
Blackburn
,
H. M.
, and
Henderson
,
R. D.
,
1999
, “
A Study of Two-Dimensional Flow Past an Oscillating Cylinder
,”
J. Fluid Mech.
,
385
, pp.
255
286
.
20.
Carberry
,
J.
,
Sheridan
,
J.
, and
Rockwell
,
D.
,
2001
, “
Forces and Wake Modes of an Oscillating Cylinder
,”
J. Fluids Struct.
,
15
, pp.
523
532
.
21.
Jeon
,
D.
, and
Gharib
,
M.
,
2001
On Circular Cylinders Undergoing Two-Degrees-of-Freedom Forced Motions
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
533
541
.
22.
Zhang
,
M. M.
,
Zhou
,
Y.
, and
Cheng
,
L.
,
2003
, “
Spring Supported Cylinder Wake Control
,”
AIAA J.
,
41
(
8
), pp.
1500
1506
.
23.
Zhang
,
M. M.
,
Cheng
,
L.
, and
Zhou
,
Y.
,
2004
, “
Closed-Loop-Controlled Vortex Shedding and Vibration of a Flexibly Supported Square Cylinder Under Different Schemes
,”
Phys. Fluids
,
16
(
5
), pp.
1439
1448
.
24.
Yang
,
S. J.
,
Chang
,
T. R.
, and
Fu
,
W. S.
,
2005
, “
Numerical Simulation of Flow Structures Around an Oscillating Rectangular Cylinder in a Channel Flow
,”
Comput. Mech.
,
35
(
5
), pp.
342
351
.
25.
Alawadhi
,
E. M.
,
2013
, “
Numerical Simulation of Fluid Flow Past an Oscillating Triangular Cylinder in a Channel
,”
ASME J. Fluids Eng.
,
135
(
4
), p.
041202
.
26.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.
27.
Davis
,
R. W.
, and
Moore
,
E. F.
,
1982
, “
A Numerical Study of Vortex Shedding From Rectangles
,”
J. Fluid Mech.
,
116
, pp.
475
506
.
28.
Norberg
,
C.
,
1993
, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind Eng. Ind. Aerodyn.
,
49
(
1–3
), pp.
187
196
.
29.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
(
2
), pp.
288
306
.
30.
Saha
,
A. K.
,
Muralidhar
,
K.
, and
Biswas
,
G.
,
2003
, “
Investigation of Two and Three Dimensional Models of Transitional Flow Past a Square Cylinder
,”
J. Eng. Mech.
,
129
(
11
), pp.
1320
1329
.
31.
Okajima
,
A.
,
1995
, “
Numerical Analysis of the Flow Around an Oscillating Cylinder
,”
6th International Conference on Flow-Induced Vibration
,
London, UK
, Apr. 10–12, pp.
1
7
.
32.
Yen
,
S. C.
,
San
,
K. C.
, and
Chuang
,
T. H.
,
2008
, “
Interactions of Tandem Square Cylinders at Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
4
), pp.
927
938
.
33.
Li
,
G.
, and
Humphrey
,
J. A. C.
,
1995
, “
Numerical Modelling of Confined Flow Past a Cylinder of Square Cross-Section at Various Orientations
,”
Int. J. Numer. Methods Fluids
,
20
(
11
), pp.
1215
1236
.
34.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1990
, “
Optimization of Particle Image Velocimeters. Part 1: Double Pulsed System
,”
Meas. Sci. Technol.
,
1
(
11
), pp.
1202
1215
.
35.
Cetiner
,
O.
, and
Rockwell
,
D.
,
2001
, “
Streamwise Oscillations of a Cylinder in a Steady Current. Part 1. Locked-On States of Vortex Formation and Loading
,”
J. Fluid Mech.
,
427
, pp.
1
28
.
36.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.
37.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill Publisher
,
New York
.
38.
More
,
B. S.
,
Dutta
,
S.
,
Chauhan
,
M. K.
, and
Gandhi
,
B. K.
,
2015
, “
Experimental Investigation of Flow Field Behind Two Tandem Square Cylinders With Oscillating Upstream Cylinder
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
339
358
.
39.
Krishnamoorthy
,
S.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
2001
, “
Cross-Flow Past an Oscillating Circular Cylinder: Synchronization Phenomena in the Near Wake
,”
J. Fluids Struct.
,
15
(
7
), pp.
955
980
.
40.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
381
.
41.
Wilcox
,
D.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
42.
Panigrahi
,
P. K.
, and
Acharya
,
S.
,
2005
, “
Excited Turbulent Flow Behind a Square Rib
,”
J. Fluids Struct.
,
20
(
2
), pp.
235
253
.
43.
Gerrard
,
J. H.
,
1966
, “
The Mechanics of the Formation Region of Vortices Behind Bluff Bodies
,”
J. Fluid Mech.
,
25
(
2
), pp.
401
413
.
44.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder, Part 1. Mechanisms of Phase Shift and Recovery in the Near Wake
,”
J. Fluid Mech.
,
191
, pp.
197
223
.
45.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder, Part 2. Mode Competition in the Near Wake
,”
J. Fluid Mech.
,
191
, pp.
225
245
.
You do not currently have access to this content.