Due to the penetration of alternative renewable energies, the stabilization of the electrical power network relies on the off-design operation of turbines and pump-turbines in hydro-power plants. The occurrence of cavitation is however a common phenomenon at such operating conditions, often leading to critical flow instabilities which undercut the grid stabilizing capacity of the power plant. In order to predict and extend the stable operating range of hydraulic machines, a better understanding of the cavitating flows and mainly of the transition between stable and unstable flow regimes is required. In the case of Francis turbines operating at full load, an axisymmetric cavitation vortex rope develops at the runner outlet. The cavity may enter self-oscillation, with violent periodic pressure pulsations. The flow fluctuations lead to dangerous electrical power swings and mechanical vibrations, dictating an inconvenient and costly restriction of the operating range. The present paper reports an extensive numerical and experimental investigation on a reduced scale model of a Francis turbine at full load. For a given operating point, three pressure levels in the draft tube are considered, two of them featuring a stable flow configuration and one of them displaying a self-excited oscillation of the cavitation vortex rope. The velocity field is measured by two-dimensional (2D) particle image velocimetry (PIV) and systematically compared to the results of a simulation based on a homogeneous unsteady Reynolds-averaged Navier–Stokes (URANS) model. The validation of the numerical approach enables a first comprehensive analysis of the flow transition as well as an attempt to explain the onset mechanism.

References

1.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2015
, “
Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), p. 215.
2.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2016
, “
LDV Survey of Cavitation and Resonance Effect on the Precessing Vortex Rope Dynamics in the Draft Tube of Francis Turbines
,”
Exp. Fluids
,
57
(
11
), p. 168.
3.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.
4.
Rheingans
,
W. J.
,
1940
, “
Power Swings in Hydroelectric Power Plants
,”
Trans. ASME
,
62
, pp. 171–184.
5.
Koutnik
,
J.
,
Nicolet
,
C.
,
Schohl
,
G.
, and
Avellan
,
F.
,
2006
, “
Overload Surge Event in a Pumped-Storage Power Plant
,”
23rd IAHR Symposium on Hydraulic Machinery and Systems
, Yokohama, Japan, Oct. 18–21, pp.
1
15
.https://www.researchgate.net/publication/37446387_Overload_Surge_Event_in_a_Pumped-Storage_Power_Plant
6.
Alligné
,
S.
,
Nicolet
,
C.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2014
, “
Cavitation Surge Modelling in Francis Turbine Draft Tube
,”
J. Hydraul. Res.
,
52
(
3
), pp.
1
13
.
7.
Müller
,
A.
,
Yamamoto
,
K.
,
Alligné
,
S.
,
Yonezawa
,
K.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2016
, “
Measurement of the Self-Oscillating Vortex Rope Dynamics for Hydroacoustic Stability Analysis
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021206
.
8.
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2017
, “
Fluid-Structure Interaction Mechanisms Leading to Dangerous Power Swings in Francis Turbines at Full Load
,”
J. Fluids Struct.
,
69
, pp.
56
71
.
9.
Panov
,
L.
,
Chirkov
,
D.
,
Cherny
,
S.
,
Pylev
,
I.
, and
Sotnikov
,
A.
,
2012
, “
Numerical Simulation of Steady Cavitating Flow of Viscous Fluid in a Francis Hydroturbine
,”
Thermophys. Aeromech.
,
19
(
3
), pp.
415
427
.
10.
Susan-Resiga
,
R.
,
Ciocan
,
G.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.
11.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Avellan
,
F.
, and
Anton
,
I.
,
2011
, “
Mathematical Modelling of Swirling Flow in Hydraulic Turbines for the Full Operating Range
,”
Appl. Math. Modell.
,
35
(
10
), pp.
4759
4773
.
12.
Rudolf
,
P.
, and
Štefan
,
D.
,
2012
, “
Decomposition of the Swirling Flow Field Downstream of Francis Turbine Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062008
.
13.
Štefan
,
D.
,
Rudolf
,
P.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2017
, “
Proper Orthogonal Decomposition of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081101
.
14.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2008
, “
One-Dimensional Analysis of Full Load Draft Tube Surge
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041106
.
15.
Dörfler
,
P.
,
Keller
,
M.
, and
Braun
,
O.
,
2010
, “
Francis Full-Load Surge Mechanism Identified by Unsteady 2-Phase CFD
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012026
.
16.
Flemming
,
F.
,
Foust
,
J.
,
Koutnik
,
J.
, and
Fisher
,
R. K.
,
2009
, “
Overload Surge Investigation Using CFD Data
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
315
323
.
17.
Mössinger
,
P.
,
Conrad
,
P.
, and
Jung
,
A.
,
2014
, “
Transient Two-Phase CFD Simulation of Overload Pressure Pulsation in a Prototype Sized Francis Turbine Considering the Waterway Dynamics
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(3), p. 032033.
18.
Chirkov
,
D.
,
Panov
,
L.
,
Cherny
,
S.
, and
Pylev
,
I.
,
2014
, “
Numerical Simulation of Full Load Surge in Francis Turbines Based on Three-Dimensional Cavitating Flow Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(3), p. 032036.
19.
Panov
,
L.
,
Chirkov
,
D.
,
Cherny
,
S.
, and
Pylev
,
I.
,
2014
, “
Numerical Simulation of Pulsation Processes in Hydraulic Turbine Based on 3D Model of Cavitating Flow
,”
Thermophys. Aeromech.
,
21
(
1
), pp.
31
43
.
20.
Alligné
,
S.
,
Decaix
,
J.
,
Müller
,
A.
,
Nicolet
,
C.
,
Avellan
,
F.
, and
Münch
,
C.
,
2016
, “
RANS Computations for Identification of 1-D Cavitation Model Parameters: Application to Full Load Cavitation Vortex Rope
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(8), p. 082014.
21.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” International Electrotechnic Commission, Geneva, Switzerland, Standard No.
60193
.http://standards.globalspec.com/std/269886/iec-60193
22.
Goyal
,
R.
,
Cervantes
,
M. J.
, and
Gandhi
,
B.
,
2017
, “
Vortex Rope Formation in a High Head Model Francis Turbine
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041102
.
23.
Duquesne
,
P.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2016
, “
Investigation of Flow Separation in a Diffuser of a Bulb Turbine
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011102
.
24.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
25.
Menter
,
F.
,
1993
, “
Zonal Two Equation k–ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.
26.
Trivedi
,
C.
, and
Cervantes
,
M. J.
,
2016
, “
State of the Art in Numerical Simulation of High Head Francis Turbines
,”
Renewable Energy Environ. Sustainability
,
1
, p.
20
.
27.
Zwart
,
P.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 3.
28.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp.
277
282
.http://resolver.caltech.edu/CaltechAUTHORS:20140808-114249321
29.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
30.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2015
, “
Numerical Simulations of the Cavitation Phenomena in a Francis Turbine at Deep Part Load Conditions
,”
J. Phys. Conf. Ser.
,
656
, p. 012074.
31.
Barth
,
T. J.
, and
Jesperon
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.
32.
Hirsch
,
C.
,
1988
,
Numerical Computation of Internal and External Flows—Fundamentals of Numerical Discretization
, Vol.
I
,
Wiley
,
Hoboken, NJ
.
33.
ANSYS
,
2015
, “
Ansys CFX—Solver Theory Guide (Release 15.0)
,”
ANSYS, Inc.
,
Canonsburg, PA
.
34.
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2014
, “
On the Physical Mechanisms Governing Self-Excited Pressure Surge in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(3), p. 032034.
35.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
You do not currently have access to this content.