Hybrid low pressure air extractors are an economic way to enhance indoor air quality. The evaluation of their energetic performances needs the analysis of flow parameters that is typically done with wind tunnel data and numerical simulations. The purpose of this study is to analyze, numerically and experimentally, the flow and the energetic performances of a hybrid rooftop extractor. This innovative extractor has two main features: it works at low difference of pressure, below 50 Pa, and its fan is placed far above the duct outlet, out of the fluid flow. The hybrid extractor works following three modes of operation: stack effect, Venturi effect, and fan rotation. The two first modes of operation allow large energy saving. To analyze the three modes of operation, three sets of corresponding Reynolds-averaged Navier–Stokes (RANS) simulations are developed. The first one allows us to estimate the pressure drop due to the geometry of the air extractor. The second one is used to check the ability of the extractor to generate a suction into the duct in the presence of wind. The final one involves multiple reference frame (MRF) modeling in order to study the flow when the electric motor drives the fan. The numerical simulation configurations are validated with experimental data. A good behavior of the extractor is found for simulations of stack effect mode and Venturi effect mode. The stack effect and the Venturi effect allows the hybrid extractor to work most of the time without electric power. Finally, energetic comparisons are given.

References

1.
Khan
,
N.
,
Su
,
Y.
, and
Riffat
,
S. B.
,
2008
, “
A Review on Wind Driven Ventilation Techniques
,”
Energy Build.
,
40
(
8
), pp.
1586
1604
.
2.
Ismail
,
M.
, and
Abdul Rahman
,
A.
,
2010
, “
Comparison of Different Hybrid Turbine Ventilator (HTV) Application Strategies to Improve the Indoor Thermal Comfort
,”
Int. J. Environ. Res.
,
4
(
2
), pp.
297
308
.
3.
Lai
,
C.-M.
,
2003
, “
Experiments on the Ventilation Efficiency of Turbine Ventilators Used for Building and Factory Ventilation
,”
Energy Build.
,
35
(
9
), pp.
927
932
.
4.
Revel
,
A.
,
1998
, “
Testing of Two Wind Driven Roof Ventilators
,” INSEARCH Limited, Sydney, Australia, Technical Report No.
E98/42/041
.http://www.svswindventilators.com/Testing%20of%20Hurricane%20Ventilators%20Vs.%20Spherical%20Vane%20Ventilators.pdf
5.
Khan
,
N.
,
Su
,
Y.
,
Riffat
,
S. B.
, and
Biggs
,
C.
,
2008
, “
Performance Testing and Comparison of Turbine Ventilators
,”
Renewable Energy
,
33
(
11
), pp.
2441
2447
.
6.
De Gids
,
W.
, and
Den Ouden
,
H. P. L.
,
1987
, “
Three Investigations of the Behavior of Ducts for Natural Ventilation in Which an Examination is Made of the Influence of Location and Height of the Outlet, of the Built-Up Nature of the Surroundings and of the Form of the Outlet
,” TNO, The Hague, The Netherlands.
7.
Hughes
,
B. R.
, and
Abdul Ghani
,
S. A. A.
,
2008
, “
Investigation of a Windvent Passive Ventilation Device Against Current Fresh Air Supply Recommendations
,”
Energy Build.
,
40
(
9
), pp.
1651
1659
.
8.
Hughes
,
B. R.
, and
Abdul Ghani
,
S. A. A.
,
2009
, “
A Numerical Investigation Into the Effect of Windvent Dampers on Operating Conditions
,”
Energy Build.
,
44
(
2
), pp.
237
248
.
9.
Hughes
,
B. R.
, and
Abdul Ghani
,
S. A. A.
,
2010
, “
A Numerical Investigation Into the Effect of Windvent Louvre External Angle on Passive Stack Ventilation Performance
,”
Energy Build.
,
45
(
4
), pp.
1025
1036
.
10.
Serag-Eldin
,
M. A.
,
2009
, “
Prediction of Performance of a Wind-Driven Ventilation Device
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
11–12
), pp.
560
572
.
11.
Kim
,
J.-H.
,
Kim
,
J.-W.
, and
Kim
,
K.-Y.
,
2011
, “
Axial-Flow Ventilation Fan Design Through Multi-Objective Optimization to Enhance Aerodynamic Performance
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101101
.
12.
Pfeiffer
,
A.
,
Dorer
,
V.
, and
Weber
,
A.
,
2008
, “
Modelling of Cowl Performance in Building Simulation Tools Using Experimental Data and Computational Fluid Dynamics
,”
Build. Environ.
,
43
(
8
), pp.
1361
1372
.
13.
Van Hooff
,
T.
,
Blocken
,
B.
,
Aanen
,
L.
, and
Bronsema
,
B.
,
2011
, “
A Venturi-Shaped Roof for Wind-Induced Natural Ventilation of Buildings: Wind Tunnel and CFD Evaluation of Different Design Configurations
,”
Build. Environ.
,
46
(
9
), pp.
1797
1807
.
14.
Van Hooff
,
T.
,
Blocken
,
B.
,
Aanen
,
L.
, and
Bronsema
,
B.
,
2012
, “
Numerical Analysis of the Performance of a Venturi-Shaped Roof for Natural Ventilation: Influence of Building Width
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
419
427
.
15.
Blocken
,
B.
,
Van Hooff
,
T.
,
Aanen
,
L.
, and
Bronsema
,
B.
,
2011
, “
Computational Analysis of the Performance of a Venturi-Shaped Roof for Natural Ventilation: Venturi-Effect Versus Wind-Blocking Effect
,”
Comput. Fluids
,
48
(
1
), pp.
202
213
.
16.
Montazeri
,
H.
,
Montazeri
,
F.
,
Azizian
,
R.
, and
Mostafavi
,
S.
,
2010
, “
Two-Sided Wind Catcher Performance Evaluation Using Experimental, Numerical and Analytical Modeling
,”
Renewable Energy
,
35
(
7
), pp.
1424
1435
.
17.
Montazeri
,
H.
,
2011
, “
Experimental and Numerical Study on Natural Ventilation Performance of Various Multi-Opening Wind Catchers
,”
Build. Environ.
,
46
(
2
), pp.
370
378
.
18.
Lien
,
S.-T. J.
, and
Ahmed
,
N. A.
,
2010
, “
Numerical Simulation of Rooftop Ventilator Flow
,”
Build. Environ.
,
45
(
8
), pp.
1808
1815
.
19.
Farahani
,
A.
,
Adam
,
N.
, and
Ariffin
,
M.
,
2010
, “
Simulation of Airflow and Aerodynamic Forces Acting on a Rotating Turbine Ventilator
,”
Am. J. Eng. Appl. Sci.
,
3
(
1
), p.
159
.
20.
BSI
,
2005
, “
Ventilation for Buildings. Performance Testing of Components/Products for Residential Ventilation. Cowls and Roof Outlet Terminal Devices
,” British Standards Institution, London, Standard No.
EN-13141-5
.http://www.din.de/en/getting-involved/standards-committees/nhrs/projects/wdc-proj:din21:243256600
21.
ISO
,
2008
, “
Industrial Fans. Performance Testing Using Standardized Airways
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO-5801
.https://www.iso.org/standard/39542.html
22.
Ferziger
,
J. H.
, and
Perić
,
M.
,
1996
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer
,
Berlin
.
23.
Shih
,
T.-H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
,
1993
, “
A Realizable Reynolds Stress Algebraic Equation Model
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-105993
.https://ntrs.nasa.gov/search.jsp?R=19930007407
24.
Strasser
,
W.
,
2009
, “
Cyclone-Ejector Coupling and Optimisation
,”
Prog. Comput. Fluid Dyn.
,
10
(
1
), pp.
19
31
.
25.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
26.
Liu
,
H.-L.
,
Ren
,
Y.
,
Wang
,
K.
,
Wu
,
D.-H.
,
Ru
,
W.-M.
, and
Tan
,
M.-G.
,
2012
, “
Research of Inner Flow in a Double Blades Pump Based on Openfoam
,”
J. Hydrodyn., Ser. B
,
24
(
2
), pp.
226
234
.
27.
Vanyo
,
J. P.
,
1993
,
Rotating Fluids in Engineering and Science
, Elsevier, Amsterdam, The Netherlands.
28.
Ballesteros-Tajadura
,
R.
,
Velarde-Suárez
,
S.
,
Hurtado-Cruz
,
J. P.
, and
Santolaria-Morros
,
C.
,
2006
, “
Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
359
369
.
29.
Ballesteros-Tajadura
,
R.
,
Velarde-Suárez
,
S.
, and
Hurtado-Cruz
,
J. P.
,
2008
, “
Noise Prediction of a Centrifugal Fan: Numerical Results and Experimental Validation
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091102
.
30.
Gonzalez
,
J.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.
31.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
A Critical Review of Computational Methods and Their Application in Industrial Fan Design
,”
ISRN Mech. Eng.
,
2013
, p.
625175
.
32.
Hamidreza
,
T.
,
Masoud
,
B.
, and
Mohammad
,
T. R.
,
2012
, “
An Investigation on Turbocharger Turbine Performance Parameters Under Inlet Pulsating Flow
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081102
.
33.
Tallgren
,
J. A.
,
Sarin
,
D. A.
, and
Sheard
,
A. G.
,
2004
, “
Utilization of CFD in Development of Centrifugal Fan Aerodynamics
,”
International Conference on Fans
, London, Nov. 9–10, Vol.
4
, p.
99
.
34.
Pluviose
,
M.
,
2004
, “
Similitude des turbomachines hydrauliques
,”
Techniques De L’ingénieur, Saint-Denis, France
, Report No. TIB173DUO.
35.
Wang
,
S. K.
,
2001
,
Handbook of Air Conditioning and Refrigeration
,
McGraw-Hill
, New York.
36.
Neal
,
D.
, and
Foss
,
J.
,
2007
, “
The Application of an Aerodynamic Shroud for Axial Ventilation Fans
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
764
772
.
You do not currently have access to this content.