A laser-induced fluorescence (LIF)-based nitric-oxide flow-tagging technique was applied to measure both velocity and NO lifetime in a hypersonic shock tunnel from two experimental test runs. The results were supported by an analytical profile proposed in this paper that provides a way to correct velocity measurements under unknown systematic error sources. This procedure provided velocities with discrepancies lower than 3% for a total of five measurements, and lower than 2% when compared with that obtained from a linear fit. Additionally, the comparison between the proposed and experimental profiles allowed us to obtain the fluorescence NO lifetime from only one image.
Issue Section:
Flows in Complex Systems
References
1.
Lawson
, N.
, and Wu
, J.
, 1997
, “Three-Dimensional Particle Image Velocimetry: Experimental Error Analysis of a Digital Angular Stereoscopic System
,” Meas. Sci. Technol.
, 8
(12
), p. 1455
.2.
Haertig
, J.
, Havermann
, M.
, Rey
, C.
, and George
, A.
, 2002
, “Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows
,” AIAA J.
, 40
(6
), pp. 1056
–1060
.3.
Meier
, A. H.
, and Roesgen
, T.
, 2012
, “Imaging Laser Doppler Velocimetry
,” Exp. Fluids
, 52
(4
), pp. 1017
–1026
.4.
Meyers
, J. F.
, 1995
, “Development of Doppler Global Velocimetry as a Flow Diagnostics Tool
,” Meas. Sci. Technol.
, 6
(6
), p. 769
.5.
Ainsworth
, R.
, Thorpe
, S.
, and Manners
, R.
, 1997
, “A New Approach to Flow-Field Measurement—A View of Doppler Global Velocimetry Techniques
,” Int. J. Heat Fluid Flow
, 18
(1
), pp. 116
–130
.6.
Vedula
, R.
, Mittal
, M.
, and Schock
, H. J.
, 2013
, “Molecular Tagging Velocimetry and Its Application to In-Cylinder Flow Measurements
,” ASME J. Fluids Eng.
, 135
(12
), p. 121203
.7.
Miles
, R.
, Connors
, J.
, Markovitz
, E.
, Howard
, P.
, and Roth
, G.
, 1989
, “Instantaneous Profiles and Turbulence Statistics of Supersonic Free Shear Layers by Raman Excitation Plus Laser-Induced Electronic Fluorescence (Relief) Velocity Tagging of Oxygen
,” Exp. Fluids
, 8
(1–2
), pp. 17
–24
.8.
Miles
, R. B.
, Grinstead
, J.
, Kohl
, R. H.
, and Diskin
, G.
, 2000
, “The Relief Flow Tagging Technique and Its Application in Engine Testing Facilities and for Helium-Air Mixing Studies
,” Meas. Sci. Technol.
, 11
(9
), p. 1272
.9.
Ribarov
, L.
, Wehrmeyer
, J.
, Pitz
, R.
, and Yetter
, R.
, 2002
, “Hydroxyl Tagging Velocimetry (HTV) in Experimental Air Flows
,” Appl. Phys. B
, 74
(2
), pp. 175
–183
.10.
Pitz
, R. W.
, Lahr
, M. D.
, Douglas
, Z. W.
, Wehrmeyer
, J. A.
, Hu
, S.
, Carter
, C. D.
, Hsu
, K.-Y.
, Lum
, C.
, and Koochesfahani
, M. M.
, 2005
, “Hydroxyl Tagging Velocimetry in a Supersonic Flow Over a Cavity
,” Appl. Opt.
, 44
(31
), pp. 6692
–6700
.11.
Pitz
, R. W.
, Debarber
, P. A.
, Brown
, M. S.
, Brown
, T. M.
, Nandula
, S. P.
, Segall
, J.
, and Skaggs
, P. A.
, 1996
, “Unseeded Velocity Measurement by Ozone Tagging Velocimetry
,” Opt. Lett.
, 21
(10
), pp. 755
–757
.12.
Pitz
, R. W.
, Wehrmeyer
, J. A.
, Ribarov
, L. A.
, Oguss
, D. A.
, Batliwala
, F.
, DeBarber
, P. A.
, Deusch
, S.
, and Dimotakis
, P. E.
, 2000
, “Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,” Meas. Sci. Technol.
, 11
(9
), p. 1259
.13.
Sánchez-González
, R.
, Srinivasan
, R.
, Bowersox
, R. D.
, and North
, S. W.
, 2011
, “Simultaneous Velocity and Temperature Measurements in Gaseous Flow Fields Using the Venom Technique
,” Opt. Lett.
, 36
(2
), pp. 196
–198
.14.
Sánchez-González
, R.
, Bowersox
, R. D.
, and North
, S. W.
, 2014
, “Vibrationally Excited NO Tagging by NO (A2Σ+) Fluorescence and Quenching for Simultaneous Velocimetry and Thermometry in Gaseous Flows
,” Opt. Lett.
, 39
(9
), pp. 2771
–2774
.15.
Dam
, N.
, Klein-Douwel
, R.
, Sijtsema
, N. M.
, and Ter Meulen
, J.
, 2001
, “Nitric Oxide Flow Tagging in Unseeded Air
,” Opt. Lett.
, 26
(1
), pp. 36
–38
.16.
Sijtsema
, N.
, Dam
, N.
, Klein-Douwel
, R.
, and Meulen
, J. T.
, 2002
, “Air Photolysis and Recombination Tracking: A New Molecular Tagging Velocimetry Scheme
,” AIAA J.
, 40
(6
), pp. 1061
–1064
.17.
Bominaar
, J.
, Pashtrapanska
, M.
, Elenbaas
, T.
, Dam
, N.
, Ter Meulen
, H.
, and van de Water
, W.
, 2008
, “Writing in Turbulent Air
,” Phys. Rev. E
, 77
(4
), p. 046312
.18.
Michael
, J. B.
, Edwards
, M. R.
, Dogariu
, A.
, and Miles
, R. B.
, 2011
, “Femtosecond Laser Electronic Excitation Tagging for Quantitative Velocity Imaging in Air
,” Appl. Opt.
, 50
(26
), pp. 5158
–5162
.19.
Jiang
, N.
, Halls
, B. R.
, Stauffer
, H. U.
, Danehy
, P. M.
, Gord
, J. R.
, and Roy
, S.
, 2016
, “Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging Velocimetry
,” Opt. Lett.
, 41
(10
), pp. 2225
–2228
.20.
Zhang
, S.
, Yu
, X.
, Yan
, H.
, Huang
, H.
, and Liu
, H.
, 2017
, “Molecular Tagging Velocimetry of NH Fluorescence in a High-Enthalpy Rarefied Gas Flow
,” Appl. Phys. B
, 123
(4
), p. 122
.21.
Hall
, C. A.
, Ramsey
, M. C.
, Knaus
, D. A.
, and Pitz
, R. W.
, 2017
, “Molecular Tagging Velocimetry in Nitrogen With Trace Water Vapor
,” Meas. Sci. Technol.
, 28
(8
), p. 085201.22.
Danehy
, P. M.
, O Byrne
, S.
, Houwing
, A. F. P.
, Fox
, J. S.
, and Smith
, D. R.
, 2003
, “Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide
,” AIAA J.
, 41
(2
), pp. 263
–271
.23.
Heard
, D. E.
, Jeffries
, J. B.
, and Crosley
, D. R.
, 1991
, “Collisional Quenching of A2Σ+ NO and A2Δ CH in Low Pressure Flames
,” Chem. Phys. Lett.
, 178
(5–6
), pp. 533
–537
.24.
Paul, P. H., Gray, J. A., Durant, J. L., and Thoman, J. W.,
1994
, “Collisional Quenching Corrections for Laser-Induced Fluorescence Measurements of NO A2Sigma(+)
,” AIAA J.
, 32
(8
), pp. 1670
–1675
.25.
Toro
, P.
, Minucci
, M.
, Chanes
, J.
, Jr., Oliveira
, A.
, Gomes
, F.
, Myrabo
, L.
, and Nagamatsu
, H. T.
, 2008
, “New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu
,” AIP Conf. Proc.
, 997
, pp. 173
–184
.26.
Minucci
, M.
, and Nagamatsu
, H.
, 1993
, “Hypersonic Shock-Tunnel Testing at an Equilibrium Interface Condition of 4100 K
,” J. Thermophys. Heat Transfer
, 7
(2
), pp. 251
–260
.27.
McBride
, B. J.
, Zehe
, M. J.
, and Gordon
, S.
, 2002
, “NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-TP-2002-211556
.https://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-211556.pdfCopyright © 2018 by ASME
You do not currently have access to this content.