In the presence of mean strain or rotation, the anisotropy of turbulence increases due to the rapid pressure strain term. In this paper, we consider the modeling of the rapid pressure strain correlation of turbulence. The anisotropy of turbulence in the presence of mean strain is studied and a new model is formulated by calibrating the model constants at the rapid distortion limit. This model is tested for a range of plane strain and elliptic flows and compared to direct numerical simulation (DNS) results. The present model shows agreement with DNS and improvements over the earlier models like those by Launder et al. (1975, “Progress in the Development of a Reynolds-Stress Turbulence Closure,” J. Fluid Mech., 68(3), pp. 537–566.) and Speziale et al. (1991, “Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,” J. Fluid Mech., 227(1), pp. 245–272.) that have been reported to give satisfactory performance for hyperbolic flows but not satisfactory for elliptic flows.

References

1.
Hanjalić
,
K.
, and
Launder
,
B.
,
2011
,
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
,
Cambridge University Press
, Cambridge, UK.
2.
Durbin
,
P. A.
,
2017
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech.
,
50
, pp.
77
103
.
3.
Klifi
,
H.
, and
Lili
,
T.
,
2013
, “
A Compressibility Correction of the Pressure Strain Correlation Model in Turbulent Flow
,”
C. R. Méc.
,
341
(
7
), pp.
567
580
.
4.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2014
, “
On the Realizability of Pressure–Strain Closures
,”
J. Fluid Mech.
,
755
, pp.
535
560
.
5.
Jakirlić
,
S.
, and
Maduta
,
R.
,
2015
, “
Extending the Bounds of Steady Rans Closures: Toward an Instability-Sensitive Reynolds Stress Model
,”
Int. J. Heat Fluid Flow
,
51
, pp.
175
194
.
6.
Manceau
,
R.
,
2015
, “
Recent Progress in the Development of the Elliptic Blending Reynolds-Stress Model
,”
Int. J. Heat Fluid Flow
,
51
, pp.
195
220
.
7.
Eisfeld
,
B.
,
Rumsey
,
C.
, and
Togiti
,
V.
,
2016
, “
Verification and Validation of a Second-Moment-Closure Model
,”
AIAA J.
,
54
(
5
), pp.
1524
1541
.
8.
Schwarzkopf
,
J. D.
,
Livescu
,
D.
,
Baltzer
,
J. R.
,
Gore
,
R. A.
, and
Ristorcelli
,
J.
,
2016
, “
A Two-Length Scale Turbulence Model for Single-Phase Multi-Fluid Mixing
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
1
43
.
9.
Moosaie
,
A.
, and
Manhart
,
M.
,
2016
, “
On the Pressure-Strain Correlation in Fibrous Drag-Reduced Turbulent Channel Flow
,”
Phys. Fluids
,
28
(
2
), p.
025101
.
10.
Lee
,
K.
,
Venugopal
,
V.
, and
Girimaji
,
S. S.
,
2016
, “
Pressure-Strain Energy Redistribution in Compressible Turbulence: Return-to-Isotropy Versus Kinetic-Potential Energy Equipartition
,”
Phys. Scr.
,
91
(
8
), p.
084006
.
11.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2017
, “
Toward Approximating Non-Local Dynamics in Single-Point Pressure–Strain Correlation Closures
,”
J. Fluid Mech.
,
811
, pp.
168
188
.
12.
Sun
,
J.
,
Kuhn
,
D.
, and
Naterer
,
G.
,
2017
, “
Eddy Viscosity and Reynolds Stress Models of Entropy Generation in Turbulent Channel Flows
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
034501
.
13.
Johansson
,
A. V.
, and
Hallbäck
,
M.
,
1994
, “
Modelling of Rapid Pressure strain in Reynolds-Stress Closures
,”
J. Fluid Mech.
,
269
(
1
), pp.
143
168
.
14.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
15.
Rotta
,
J.
,
1951
, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
,
129
(
6
), pp.
547
572
.
16.
Sarkar
,
S.
, and
Speziale
,
C. G.
,
1990
, “
A Simple Nonlinear Model for the Return to Isotropy in Turbulence
,”
Phys. Fluids A: Fluid Dyn.
,
2
(
8
), p.
8493
.
17.
Warrior
,
H.
,
Mathews
,
S.
,
Maity
,
S.
, and
Sasmal
,
K.
,
2014
, “
An Improved Model for the Return to Isotropy of Homogeneous Turbulence
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
034501
.
18.
Sasmal
,
K.
,
Maity
,
S.
, and
Warrior
,
H. V.
,
2014
, “
On the Application of a New Formulation of Nonlinear Eddy Viscosity Based on Anisotropy to Numerical Ocean Models
,”
J. Turbul.
,
15
(
8
), pp.
516
539
.
19.
Panda
,
J.
,
Warrior
,
H.
,
Maity
,
S.
,
Mitra
,
A.
, and
Sasmal
,
K.
,
2017
, “
An Improved Model Including Length Scale Anisotropy for the Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
044503
.
20.
Reynolds
,
W.
, and
Kassinos
,
S.
,
1995
, “
One-Point Modelling of Rapidly Deformed Homogeneous Turbulence
,”
Proc. R. Soc. London A
,
451
, pp.
87
104
.
21.
Launder
,
B.
,
Tselepidakis
,
D.
, and
Younis
,
B.
,
1987
, “
A Second-Moment Closure Study of Rotating Channel Flow
,”
J. Fluid Mech.
,
183
(
1
), pp.
63
75
.
22.
Speziale
,
C. G.
,
Gatski
,
T. B.
, and
Mac Giolla Mhuiris
,
N.
,
1990
, “
A Critical Comparison of Turbulence Models for Homogeneous Shear Flows in a Rotating Frame
,”
Phys. Fluids A: Fluid Dyn.
,
2
(
9
), pp.
1678
1684
.
23.
Launder
,
B.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
–566.
24.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
(
1
), pp.
245
272
.
25.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2010
, “
Pressure–Strain Correlation Modeling: Towards Achieving Consistency With Rapid Distortion Theory
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
593
619
.
26.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-Point Physics and Amenability to One-Point Closures
,”
J. Fluid Mech.
,
731
, pp.
639
681
.
27.
Lee
,
M. J.
,
1989
, “
Distortion of Homogeneous Turbulence by Axisymmetric Strain and Dilatation
,”
Phys. Fluids A: Fluid Dyn.
,
1
(
9
), pp.
1541
1557
.
28.
Blaisdell
,
G.
, and
Shariff
,
K.
,
1996
, “
Simulation and Modeling of the Elliptic Streamline Flow
,”
Studying Turbulence Using Numerical Simulation Databases
, pp.
443
446
.
29.
Mishra
,
A. A.
,
2014
, “
The Art and Science in Modeling the Pressure-Velocity Interactions
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.
30.
Pope
,
S.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
31.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2015
, “
Hydrodynamic Stability of Three-Dimensional Homogeneous Flow Topologies
,”
Phys. Rev. E
,
92
(
5
), p.
053001
.
32.
Lee
,
M.
, and
Reynolds
,
W.
,
1985
, “
Numerical Experiments on the Structure of Homogeneous Turbulence
,” Stanford University, Stanford, CA, Technical Report No. TF-24.
33.
Mishra
,
A.
, and
Girimaji
,
S.
,
2016
, “
Manufactured Turbulence With Langevin Equations
,” preprint
arXiv: 1611.03834
.
34.
Isaza
,
J. C.
, and
Collins
,
L. R.
,
2009
, “
On the Asymptotic Behaviour of Large-Scale Turbulence in Homogeneous Shear Flow
,”
J. Fluid Mech.
,
637
, pp.
213
239
.
35.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
,
1983
, “
Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible Turbulent Flows
,” Stanford University, Stanford, CA, Technical Report No. TF-19.
You do not currently have access to this content.