Flow in turbomachines is generally highly turbulent. Nonetheless, boundary layers may exhibit laminar-to-turbulent transition, and relaminarization of the turbulent flow may also occur. The state of flow of the boundary layer is important since it influences transport phenomena like skin friction and heat transfer. In this paper, relaminarization in accelerated flat-plate boundary-layer flows is experimentally investigated, measuring flow velocities with laser Doppler anemometry (LDA). Besides the mean values, statistical properties of the velocity fluctuations are discussed in order to understand the processes in relaminarization. It is shown that strong acceleration leads to a suppression of turbulence production. The velocity fluctuations in the accelerated boundary layer flow “freeze,” while the mean velocity increases, thus reducing the turbulence intensity. This leads to a laminar-like velocity profile close to the wall, resulting in a decrease of the local skin friction coefficient. Downstream from the section with enforced relaminarization, a rapid retransition to turbulent flow is observed. The findings of this work also describe the mechanism of retransition.

References

1.
Bader
,
P.
, and
Sanz
,
W.
,
2015
, “
Steady and Unsteady CFD Calculation of the Laminar-to-Turbulent Transition in a Turning Mid Turbine Frame With Embedded Design
,”
ASME
Paper No. GT2015-42617.
2.
Schlichting
,
H.
, and
Gersten
,
K.
,
2006
,
Grenzschicht-Theorie (Boundary-Layer Theory)
,
Springer-Verlag
,
Berlin
.
3.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
4.
Yip
,
L. P.
,
Vijgen
,
P.
,
Hardin
,
J. D.
, and
van Dam
,
C. P.
,
1993
, “
In-Flight Pressure Distributions and Skin-Friction Measurements on a Subsonic Transport High-Lift Wing Section
,” NATO Advisory Group for Research & Development, Neuilly sur Seine, France, Report No.
AGARD CP-515
.
5.
Oyewola
,
O.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
,
2003
, “
Combined Influence of the Reynolds Number and Localised Wall Suction on a Turbulent Boundary Layer
,”
Exp. Fluids
,
35
(
2
), pp.
199
206
.
6.
Oyewola
,
O.
,
2006
, “
LDV Measurements in a Pertubed Turbulent Boundary Layer
,”
J. Appl. Sci.
,
6
(
14
), pp.
2952
2955
.
7.
Widmann
,
A.
,
Duchmann
,
A.
,
Kurz
,
A.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2012
, “
Measuring Tollmien-Schlichting Waves Using Phase-Averaged Particle Image Velocimetry
,”
Exp. Fluids
,
53
(
3
), pp.
707
715
.
8.
Mukund
,
R.
,
Narasimha
,
R.
,
Viswanath
,
P. R.
, and
Crouch
,
J. D.
,
2012
, “
Multiple Laminar-Turbulent Transition Cycles Around a Swept Leading Edge
,”
Exp. Fluids
,
53
(
6
), pp.
1915
1927
.
9.
Bader
,
P.
, and
Sanz
,
W.
,
2015
, “
On the Setup of a Test Bench for Predicting Laminar-to-Turbulent Transition on a Flat Plate
,”
12th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Genova, Italy, July 13–16, Paper No. ISAIF12-074.
10.
Simon
,
B.
,
Filius
,
A.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2016
, “
IR Thermography for Dynamic Detection of Laminar-Turbulent Transition
,”
Exp. Fluids
,
57
(
5
), p. 93.
11.
Joseph
,
L. A.
,
Borgoltz
,
A.
, and
Devenport
,
W.
,
2016
, “
Infrared Thermography for Detection of Laminar-Turbulent Transition in Low-Speed Wind Tunnel Testing
,”
Exp. Fluids
,
57
(
5
), p. 77.
12.
Bader
,
P.
,
Sanz
,
W.
,
Peterleithner
,
J.
,
Woisetschläger
,
J.
,
Heitmeir
,
F.
,
Meile
,
W.
, and
Brenn
,
G.
,
2016
, “
Detecting Transition on Flat Plate Flow With Laser Interferometric Vibrometry (LIV)
,”
ASME
Paper No. GT2016-56043.
13.
Shin
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth- and Rough-Surface Turbulent Boundary Layers—Part I: Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p. 011203.
14.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
,
1979
, “
Relaminarization of Fluid Flows
,”
Adv. Appl. Mech.
,
19
, pp.
221
309
.
15.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
,
1973
, “
Relaminarization in Highly Accelerated Turbulent Boundary Layers
,”
J. Fluid Mech.
,
61
(
3
), pp.
417
447
.
16.
Narayanan
,
M. A. B.
, and
Ramjee
,
V.
,
1969
, “
On the Criteria for Reverse Transition in a Two–Dimensional Boundary Layer
,”
J. Fluid Mech.
,
35
(
2
), pp.
225
241
.
17.
Blackwelder
,
R. F.
, and
Kovasznay
,
L. S. G.
,
1972
, “
Large–Scale Motion of a Turbulent Boundary Layer During Relaminarization
,”
J. Fluid Mech.
,
53
(
1
), pp.
61
83
.
18.
Ichimiya
,
M.
,
Nakamura
,
I.
, and
Yamashita
,
S.
,
1998
, “
Properties of a Relaminarizing Turbulent Boundary Layer Under a Favorable Pressure Gradient
,”
Exp. Therm. Fluid Sci.
,
17
(
1–2
), pp.
37
48
.
19.
Escudier
,
M. P.
,
Abdel-Hameed
,
A.
,
Johnson
,
M. W.
, and
Sutcliffe
,
C. J.
,
1998
, “
Laminarisation an Re–Transition of a Turbulent Boundary Layer Subjected to Favourable Pressure Gradient
,”
Exp. Fluids
,
25
(
5–6
), pp.
491
502
.
20.
Warnack
,
D.
, and
Fernholz
,
H. H.
,
1998
, “
The Effects of a Favourable Pressure Gradient and of the Reynolds Number on an Incompressible Axisymmetric Turbulent Boundary Layer—Part 2: The Boundary Layer With Relaminarization
,”
J. Fluid Mech.
,
359
, pp.
357
381
.
21.
Mukund
,
R.
,
Viswanath
,
P. R.
,
Narasimha
,
R.
,
Prabhu
,
A.
, and
Crouch
,
J. D.
,
2006
, “
Relaminarization in Highly Favourable Pressure Gradients on a Convex Surface
,”
J. Fluid Mech.
,
566
, pp.
97
115
.
22.
Arts
,
T.
,
Boerrigter
,
H.
,
Carbonaro
,
M.
,
Charbonnier
,
J. M.
,
Degrez
,
G.
,
Olivari
,
D.
,
Riethmüller
,
M. L.
, and
Van den Braembussche
,
R. A.
,
1994
,
Measurement Techniques in Fluid Dynamics
(Lecture Series Monograph), von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
23.
Bader
,
P.
,
Sanz
,
W.
,
Steinmayr
,
C.
, and
Leitl
,
P.
,
2016
, “
Comparison of RANS and Embedded LES Calculations With Measurements of Transitional Flow Along a Flat Plate
,”
ERCOFTAC Bull.
,
106
, pp.
84
91
.
24.
Roach
,
P. R.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
25.
Launder
,
B. E.
,
1963
, “
The Turbulent Boundary Layer in a Strongly Negative Pressure Gradient
,” MIT Gas Turbine Laboratory, Cambridge, MA, Technical Report No. 71.
26.
Launder
,
B. E.
, and
Jones
,
W. P.
,
1969
, “
On the Prediction of Laminarisation
,” Ministry of Technology, Aeronautical Research Council, London, Technical Report C.P. No.
1036
.
27.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation Based Transition Model Using Local Variables—Part 2: Test Cases and Industrial Applications
,”
ASME
Paper No. GT2004-53454.
28.
Chao
,
B.
,
1964
, “
Turbulent Transport Behavior of Small Particles in Dilute Suspension
,”
Österr. Ing. Arch.
,
18
, pp.
7
21
.
29.
Albrecht
,
H.-E.
,
Damaschke
,
N.
,
Borys
,
M.
, and
Tropea
,
C.
,
2003
,
Laser Doppler and Phase Doppler Measurement Techniques
,
Springer
,
Berlin
.
30.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
, New York.
31.
Schlatter
,
P.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Johansson
,
A.
, and
Henningson
,
D.
,
2010
, “
Simulations of Spatially Evolving Turbulent Boundary Layers Up to Reθ = 4300
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
251
261
.
32.
Launder
,
B. E.
,
1964
, “
Laminarization of the Turbulent Boundary Layer in a Severe Acceleration
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
707
708
.
33.
Dennis
,
D. J. C.
,
2015
, “
Coherent Structures in Wall-Bounded Turbulence
,”
An. Acad. Bras. Cienc.
,
87
(
2
), pp.
1161
1193
.
You do not currently have access to this content.