In this work, we have performed the flume study to analyze the high-order velocity moments of turbulent boundary layer with and without downward seepage. Sediment transport experiments were done in the laboratory for no seepage (NS), 10% seepage (10%S), and 15% seepage (15%S) cases. Measures of streamwise velocity variance were found increasing with seepage, which lead to increase in sediment transport with seepage. Results show that the variance of streamwise velocity fluctuation follows logarithmic law with distance away from the bed, within inner layer. This observation is also valid for even-order moments obtained in this work. The results show that the (2p-order moments)1/p also follows logarithmic law. The slopes Ap in the turbulent boundary layer seem fairly unaffected to NS and seepage flow but follows nonuniversal behavior for NS and seepage runs. The computed slope based on the Gaussian statistics does not agree well with the slope obtained from the experimental data and computed slope are reliable with sub-Gaussian performance for NS flow and super-Gaussian behavior for seepage flow.

References

1.
Bennett
,
S. J.
, and
Best
,
J. L.
,
1995
, “
Particle Size and Velocity Discrimination in a Sediment-Laden Turbulent Flow Using Phase Doppler Anemometry
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
505
511
.
2.
Sumer
,
B. M.
,
Chua
,
L. H.
,
Cheng
,
N. S.
, and
Fredsøe
,
J.
,
2003
, “
Influence of Turbulence on Bed Load Sediment Transport
,”
J. Hydraul. Eng.
,
129
(
8
), pp.
585
596
.
3.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
4
), pp.
741
773
.
4.
Sutherland
,
A. J.
,
1967
, “
Proposed Mechanism for Sediment Entrainment by Turbulent Flows
,”
J. Geophys. Res.
,
72
(
24
), pp.
6183
6194
.
5.
Thorne
,
P. D.
,
Williams
,
J. J.
, and
Heathershaw
,
A. D.
,
1989
, “
In Situ Acoustic Measurements of Marine Gravel Threshold and Transport
,”
Sedimentology
,
36
(
1
), pp.
61
74
.
6.
Best
,
J. I. M.
,
1992
, “
On the Entrainment of Sediment and Initiation of Bed Defects: Insights From Recent Developments Within Turbulent Boundary Layer Research
,”
Sedimentology
,
39
(
5
), pp.
797
811
.
7.
Cao
,
Z.
,
1997
, “
Turbulent Bursting-Based Sediment Entrainment Function
,”
J. Hydraul. Eng.
,
123
(
3
), pp.
233
236
.
8.
Dwivedi
,
A.
,
Melville
,
B.
, and
Shamseldin
,
A. Y.
,
2010
, “
Hydrodynamic Forces Generated on a Spherical Sediment Particle During Entrainment
,”
J. Hydraul. Eng.
,
136
(
10
), pp.
756
769
.
9.
Heathershaw
,
A. D.
, and
Thorne
,
P. D.
,
1985
, “
Sea-Bed Noises Reveal Role of Turbulent Bursting Phenomenon in Sediment Transport by Tidal Currents
,”
Nature
,
316
(
6026
), pp.
339
342
.
10.
Drake
,
T. G.
,
Shreve
,
R. L.
,
Dietrich
,
W. E.
,
Whiting
,
P. J.
, and
Leopold
,
L. B.
,
1988
, “
Bedload Transport of Fine Gravel Observed by Motion-Picture Photography
,”
J. Fluid Mech.
,
192
(
1
), pp.
193
217
.
11.
Song
,
T.
, and
Graf
,
W. H.
,
1994
, “
Non-Uniform Open-Channel Flow Over a Rough Bed
,”
J. Hydrosci. Hydraul. Eng.
,
12
(
1
), pp.
1
25
.
12.
Bennett
,
S. J.
, and
Bridge
,
J. S.
,
1995
, “
The Geometry and Dynamics of Low-Relief Bed Forms in Heterogeneous Sediment in a Laboratory Channel, and Their Relationship to Water Flow and Sediment Transport
,”
J. Sediment. Res.
,
65
(
1
), pp.
29
39
.
13.
Nikora
,
V.
, and
Goring
,
D.
,
1999
, “Effects of Bed Mobility on Turbulence Structure,” National Institute of Water and Atmospheric Research, Christchurch, New Zealand, NIWA Internal Report No. 48.
14.
Nikora
,
V.
, and
Goring
,
D.
,
2000
, “
Flow Turbulence Over Fixed and Weakly Mobile Gravel Beds
,”
J. Hydraul. Eng.
,
126
(
9
), pp.
679
690
.
15.
Venditti
,
J. G.
,
Church
,
M.
, and
Bennett
,
S. J.
,
2005
, “
Morphodynamics of Small Scale Superimposed Sand Waves Over Migrating Dune Bed Forms
,”
Water Resour. Res.
,
41
(
10
), p. W10423DOI.
16.
Saber
,
A.
,
Lundström
,
T. S.
, and
Hellström
,
J. G. I.
,
2016
, “
Influence of Inertial Particles on Turbulence Characteristics in Outer and Near Wall Flow as Revealed With High Resolution Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091303
.
17.
Rao
,
A. R.
,
Sreenivasulu
,
G.
, and
Kumar
,
B.
,
2011
, “
Geometry of Sand Bed Channels With Seepage
,”
Geomorphology
,
128
(
3–4
), pp.
171
177
.
18.
Lu
,
Y.
,
Chiew
,
Y. M.
, and
Cheng
,
N. S.
,
2008
, “
Review of Seepage Effects on Turbulent Open-Channel Flow and Sediment Entrainment
,”
J. Hydraul. Res.
,
46
(
4
), pp.
476
488
.
19.
Cao
,
D.
, and
Chiew
,
Y. M.
,
2014
, “
Suction Effects on Sediment Transport in Closed-Conduit Flows
,”
J. Hydraul. Eng.
,
140
(
5
), p.
04014008
.
20.
Deshpande
,
V.
, and
Kumar
,
B.
,
2016
, “
Turbulent Flow Structures in Alluvial Channels With Curved Cross-Sections Under Conditions of Downward Seepage
,”
Earth Surf. Process. Landforms
,
41
(
8
), pp.
1073
1087
.
21.
Singha
,
A.
,
Faruque
,
M. A. A.
, and
Balachandar
,
R.
,
2012
, “
Vortices and Large-Scale Structures in a Rough Open-Channel Flow Subjected to Bed Suction and Injection
,”
J. Eng. Mech.
,
138
(
5
), pp.
491
501
.
22.
Prinos
,
P.
,
1995
, “
Bed Suction Effects on Structure of Turbulent Open-Channel Flow
,”
J. Hydraul. Eng.
,
121
(
5
), pp.
404
412
.
23.
Sreenivasulu
,
G.
,
Kumar
,
B.
, and
Rao
,
A. R.
,
2011
, “
Variation of Stream Power With Seepage in Sand Bed Channels
,”
Water SA
,
37
(
1
), pp.
115
119
.
24.
Lu
,
Y.
, and
Chiew
,
Y. M.
,
2007
, “
Seepage Effects on Dune Dimensions
,”
J. Hydraul. Eng.
,
133
(
5
), pp.
560
563
.
25.
Patel
,
M.
,
Deshpande
,
V.
, and
Kumar
,
B.
,
2015
, “
Turbulent Characteristics and Evolution of Sheet Flow in an Alluvial Channel With Downward Seepage
,”
Geomorphology
,
248
, pp.
161
171
.
26.
Devi
,
T. B.
,
Sharma
,
A.
, and
Kumar
,
B.
,
2016
, “
Turbulence Characteristics of Vegetated Channel With Downward Seepage
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121102
.
27.
Devi
,
T. B.
,
Daga
,
R.
,
Mahto
,
S. K.
, and
Kumar
,
B.
,
2016
, “
Drag and Turbulent Characteristics of Mobile Bed Channel With Mixed Vegetation Densities Under Downward Seepage
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071104
.
28.
Qian
,
J.
,
1998
, “
Scaling Exponents of the Second Order Structure Function of Turbulence
,”
J. Phys. A: Math. Gen.
,
31
(
14
), p.
3193
.
29.
Davidson
,
P. A.
,
Nickels
,
T. B.
, and
Krogstad
,
P. Å.
,
2006
, “
The Logarithmic Structure Function Law in Wall-Layer Turbulence
,”
J. Fluid Mech.
,
550
(
1
), pp.
51
60
.
30.
Huang
,
Y. X.
,
Schmitt
,
F. G.
,
Lu
,
Z. M.
,
Fougairolles
,
P.
,
Gagne
,
Y.
, and
Liu
,
Y. L.
,
2010
, “
Second Order Structure Function in Fully Developed Turbulence
,”
Phys. Rev. E
,
82
(
2
), p.
026319
.
31.
Meneveau
,
C.
, and
Marusic
,
I.
,
2013
, “
Generalized Logarithmic Law for High-Order Moments in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
719
, p. R1.
32.
de Silva
,
C. M.
,
Marusic
,
I.
,
Woodcock
,
J. D.
, and
Meneveau
,
C.
,
2015
, “
Scaling of Second-and Higher-Order Structure Functions in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
769
, pp.
654
686
.
33.
Wu
,
W.
,
Wang
,
S. S.
, and
Jia
,
Y.
,
2000
, “
Non-Uniform Sediment Transport in Alluvial Rivers
,”
J. Hydraul. Res.
,
38
(
6
), pp.
427
434
.
34.
Sharma
,
A.
, and
Kumar
,
B.
,
2016
, “
Probability Distribution of Turbulence in Curvilinear Cross Section Mobile Bed Channel
,”
Water Sci. Technol.
,
73
(
6
), pp.
1472
1482
.
35.
Sharma
,
A.
, and
Kumar
,
B.
,
2016
, “
Probability Distribution Functions of Turbulence in Seepage-Affected Alluvial Channel
,”
Fluid Dyn. Res.
,
49
(
1
), p.
015508
.
36.
Marsh
,
N. A.
,
Western
,
A. W.
, and
Grayson
,
R. B.
,
2004
, “
Comparison of Methods for Predicting Incipient Motion for Sand Beds
,”
J. Hydraul. Eng.
,
130
(
7
), pp.
616
621
.
37.
Goring
,
D. G.
, and
Nikora
,
V. I.
,
2002
, “
Despiking Acoustic Doppler Velocimeter Data
,”
J. Hydraul. Eng.
,
128
(
1
), pp.
117
126
.
38.
Lacey
,
R. W.
, and
Roy
,
A. G.
,
2008
, “
Fine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster
,”
J. Hydraul. Eng.
,
134
(
7
), pp.
925
936
.
39.
Smith
,
J. D.
, and
McLean
,
S. R.
,
1977
, “
Spatially Averaged Flow Over a Wavy Surface
,”
J. Geophys. Res.
,
82
(
12
), pp.
1735
1746
.
40.
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Structure of Turbulence Over Non Uniform Sand Bed Channel With Downward Seepage
,”
Eur. J. Mech./B Fluids
,
65
, pp.
530
541
.
41.
Prandtl
,
L.
,
1925
, “
Bericht Uber Untersuchungen Zur Ausgebildeten Turbulenz
,”
Z. Angew. Math. Mech.
,
5
(
2
), pp.
136
139
.
42.
Von Kármán
,
T.
,
1930
, “
Mechanische Änlichkeit Und Turbulenz. Nachrichten Von Der Gesellschaft Der Wissenschaften Zu Göttingen
,”
Math.-Phys. Kl.
, pp.
58
76
.
43.
Smits
,
A. J.
,
McKeon
,
B. J.
, and
Marusic
,
I.
,
2011
, “
High Reynolds Number Wall Turbulence
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
353
375
.
44.
Jiménez
,
J.
,
2012
, “
Cascades in Wall-Bounded Turbulence
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
27
45
.
45.
Nezu
,
I.
,
1977
, “Turbulent Structure in Open-Channel Flows,”
Ph.D. thesis
, Kyoto University, Kyoto, Japan.
46.
Marusic
,
I.
, and
Kunkel
,
G. J.
,
2003
, “
Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers
,”
Phys. Fluids
,
15
(
8
), pp.
2461
2464
.
47.
Hultmark
,
M.
,
Vallikivi
,
M.
,
Bailey
,
S. C. C.
, and
Smits
,
A. J.
,
2012
, “
Turbulent Pipe Flow at Extreme Reynolds Numbers
,”
Phys. Rev. Lett.
,
108
(
9
), p.
094501
.
48.
Marusic
,
I.
,
Monty
,
J. P.
,
Hultmark
,
M.
, and
Smits
,
A. J.
,
2013
, “
On the Logarithmic Region in Wall Turbulence
,”
J. Fluid Mech.
,
716
, p.
R3
.
49.
Fernholz
,
H. H.
, and
Finleyt
,
P. J.
,
1996
, “
The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
,
32
(
4
), pp.
245
311
.
You do not currently have access to this content.