Abstract

The thermal-hydraulic behavior of the flow in rod bundles has motivated numerous experimental and computational investigations. Previous studies have identified potential for accumulation of debris within the small subchannels of typical wire-wrapped assemblies with subsequent total or partial blockage of subchannel coolant flow. A test campaign was conducted to study the effects of localized blockages on the bundle averaged friction factor of a tightly packed wire-wrapped rod bundle. Blockages were installed within the bundle, and fluid pressure drop was measured across one wire pitch for a Reynolds number range of 500–17,200. The Darcy–Weisbach friction factor of the perturbed rod bundle geometry was compared with that of the unblocked bundle, as well as with the predictions of a well-established friction factor correlation. Differing effects based on blockage size and location for various flow regimes were studied. A number of conclusions can be made about the effects of the blockages on the friction factor, such as an increasing effect of the blockage on friction factor with an increase in Reynolds number, a change in flow behavior in the turbulent transition flow regime near Reynolds number 3000, differences in effect on friction factor for different types of subchannel blockage, and a nonlinear trend in friction factor variation with flow area impeded for edge subchannels. To this end, all data and quantified uncertainty produced in this study are made available for comparison and validation of advanced computational tools.

References

1.
Sahoo
,
K.
, and
Mohanty
,
A.
,
1991
, “
Turbulent Transport in Wall Subchannels and in Finite Rod Clusters
,”
Int. J. Heat Fluid Flow
,
12
(
2
), pp.
142
149
.10.1016/0142-727X(91)90041-S
2.
Piro
,
M.
,
Wassermann
,
F.
,
Grundmann
,
S.
,
Tensuda
,
B.
,
Kim
,
S. J.
,
Christon
,
M.
,
Berndt
,
M.
,
Nishimura
,
M.
, and
Tropea
,
C.
,
2017
, “
Fluid Flow Investigations Within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics
,”
Int. J. Heat Fluid Flow
,
66
, pp.
27
42
.10.1016/j.ijheatfluidflow.2017.04.010
3.
Mikuž
,
B.
, and
Tiselj
,
I.
,
2017
, “
URANS Prediction of Flow Fluctuations in Rod Bundle with Split-Type Spacer Grid
,”
Int. J. Heat Fluid Flow
,
64
, pp.
10
22
.10.1016/j.ijheatfluidflow.2017.01.008
4.
Shams
,
A.
,
Mikuž
,
B.
, and
Roelofs
,
F.
,
2018
, “
Numerical Prediction of Flow and Heat Transfer in a Loosely Spaced Bare Rod Bundle
,”
Int. J. Heat Fluid Flow
,
73
, pp.
42
62
.10.1016/j.ijheatfluidflow.2018.07.006
5.
Rehme
,
K.
,
1967
, “
Geometry-Dependence of the Pressure Loss in Rod Bundles with Coiled Wire Spacers and Longitudinal Flow
,” Ph.D. thesis, University of Karlsruhe Germany, Karlsruhe, Germany.
6.
Rehme
,
K.
,
1972
, “
Pressure Drop Performance of Rod Bundles in Hexagonal Arrangements
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2499
2517
.10.1016/0017-9310(72)90143-3
7.
Rehme
,
K.
,
1973
, “
Pressure Drop Correlations for Fuel Element Spacers
,”
Nucl. Technol.
,
17
(
1
), pp.
15
23
.10.13182/NT73-A31250
8.
Reihman
,
T. C.
,
1969
, “
An Experimental Study of Pressure Drop in Wire Wrapped FFTF Assemblies
.”
Pacific Northwest Laboratory
,
Richland, WA
, Report No. BNWL-1207.
9.
Cheng
,
S.
, and
Todreas
,
N.
,
1984
, “
Constitutive Correlations for Wire-Wrapped Subchannel Analysis under Forced and Mixed Convection Conditions. Part 1.[LMFBR]
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
Cheng
,
S.-K.
, and
Todreas
,
N. E.
,
1986
, “
Hydrodynamic Models and Correlations for Bare and Wire-Wrapped Hexagonal Rod Bundles Friction Factors, Subchannel Friction Factors and Mixing Parameters
,”
Nucl. Eng. Des.
,
92
(
2
), pp.
227
251
.10.1016/0029-5493(86)90249-9
11.
Chen
,
S.
,
Petroski
,
R.
, and
Todreas
,
N.
,
2013
, “
Numerical Implementation of the Cheng and Todreas Correlation for Wire Wrapped Bundle Friction Factors-Desirable Improvements in the Transition Flow Region
,”
Nucl. Eng. Des.
,
263
, pp.
406
410
.10.1016/j.nucengdes.2013.06.012
12.
Chen
,
S.
,
Todreas
,
N.
, and
Nguyen
,
N.
,
2014
, “
Evaluation of Existing Correlations for the Prediction of Pressure Drop in Wire-Wrapped Hexagonal Array Pin Bundles
,”
Nucl. Eng. Des.
,
267
, pp.
109
131
.10.1016/j.nucengdes.2013.12.003
13.
Bertocchi
,
F.
,
Rohde
,
M.
, and
Kloosterman
,
J.
,
2019
, “
Experimental Investigation on the Influence of Gap Vortex Streets on Fluid-Structure Interactions in Hexagonal Bundle Geometries
,”
Int. J. Heat Fluid Flow
,
79
, p.
108443
.10.1016/j.ijheatfluidflow.2019.108443
14.
Bertocchi
,
F.
,
Rohde
,
M.
, and
Kloosterman
,
J.
,
2019
, “
Understanding Migratory Flow Caused by Helicoid Wire Spacers in Rod Bundles: An Experimental and Theoretical Study
,”
Int. J. Heat Fluid Flow
,
80
, p.
108491
.10.1016/j.ijheatfluidflow.2019.108491
15.
Shaver
,
D. R.
,
Carasik
,
L. B.
,
Merzari
,
E.
,
Salpeter
,
N.
, and
Blandford
,
E.
,
2019
, “
Calculation of Friction Factors and Nusselt Numbers for Twisted Elliptical Tube Heat Exchangers Using nek5000
,”
ASME Paper No. FEDSM2018-83477
.10.1115/1.4042889
16.
Yang
,
E. E.
,
Rahai
,
H. R.
, and
Nakayama
,
A.
,
1994
, “
Mean Pressure Distribution and Drag Coefficient of Wire-Wrapped Cylinders
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
376
378
.10.1115/1.2910285
17.
Chun
,
M.-H.
, and
Seo
,
K.-W.
,
2001
, “
An Experimental Study and Assessment of Existing Friction Factor Correlations for Wire-Wrapped Fuel Assemblies
,”
Ann. Nucl. Energy
,
28
(
17
), pp.
1683
1695
.10.1016/S0306-4549(01)00023-8
18.
Choi
,
S. K.
,
Choi
,
I. K.
,
Nam
,
H. Y.
,
Choi
,
J. H.
, and
Choi
,
H. K.
,
2003
, “
Measurement of Pressure Drop in a Full-Scale Fuel Assembly of a Liquid Metal Reactor
,”
ASME J. Pressure Vessel Technol
,
125
(
2
), pp.
233
238
.10.1115/1.1565076
19.
Vassallo
,
P.
, and
Symolon
,
P.
,
2008
, “
Friction Factor Measurements in an Equally Spaced Triangular Array of Circular Tubes
,”
ASME J. Fluids Eng.
,
130
(
4
), p. 041105.10.1115/1.2903817
20.
Chang
,
S.-K.
,
Euh
,
D.-J.
,
Choi
,
H. S.
,
Kim
,
H.
,
Choi
,
S. R.
, and
Lee
,
H.-Y.
,
2016
, “
Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-Pin Rod Bundle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Technol.
,
48
(
2
), pp.
376
385
.10.1016/j.net.2015.12.013
21.
Genc¸Ay
,
S.
,
Tapucu
,
A.
,
Troche
,
N.
, and
Merilo
,
M.
,
1984
, “
Experimental Study of the Diversion Crossflow Caused by Subchannel Blockages. Part I: Experimental Procedures and Mass Flow Rates in the Channels
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
435
440
.10.1115/1.3243143
22.
Tapucu
,
A.
,
Genc¸Ay
,
S.
,
Troche
,
N.
, and
Merilo
,
M.
,
1984
, “
Experimental Study of the Diversion Crossflow Caused by Subchannel Blockages. Part II: Pressures in the Channels and the Comparison of the COBRA III-C Predictions With Experimental Data
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
441
447
.10.1115/1.3243144
23.
Teyssedou
,
A.
,
Tapucu
,
A.
, and
Camarero
,
R.
,
1992
, “
Blocked Flow Subchannel Simulation Comparison With Single-Phase Flow Data
,”
ASME J. Fluids Eng.
,
114
(
2
), pp.
205
213
.10.1115/1.2910017
24.
Fontana
,
M. H.
,
Kress
,
T. S.
,
Parsly
,
T. S.
,
Thomas
,
D. G.
, and
Wantland
,
J. L.
,
1973
, “
Effect of Partial Blockages in Simulated LMFBR Fuel Assemblies
,”
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
, Report No. ORNL-TM-4324.
25.
Fontana
,
M. H.
,
Thomas
,
D. G.
,
Kress
,
T. S.
, and
Wantland
,
J. L.
,
1975
, “
Thermal-Hydraulic Effects of Partial Blockages in Simulated LMFBR Fuel Assemblies With Applications to the CRBR,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL-TM-4779.
26.
Han
,
J. T.
,
1977
, “
Blockages in LMFBR Fuel Assemblies: A Review of Experimental and Theoretical Studies
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-5839.
27.
Han
,
J. T.
, and
Fontana
,
M. H.
,
1977
, “
Blockages in LMFBR Fuel Assemblies: A Review
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. Conf-771120-14.
28.
Roelofs
,
F.
,
Gopala
,
V.
,
Chandra
,
L.
,
Viellieber
,
M.
, and
Class
,
A.
,
2012
, “
Simulating Fuel Assemblies With Low Resolution CFD Approaches
,”
Nucl. Eng. Des.
,
250
, pp.
548
559
.10.1016/j.nucengdes.2012.05.029
29.
Di Piazza
,
I.
,
Magugliani
,
F.
,
Tarantino
,
M.
, and
Alemberti
,
A.
,
2014
, “
A CFD Analysis of Flow Blockage Phenomena in ALFRED LFR Demo Fuel Assembly
,”
Nucl. Eng. Des.
,
276
, pp.
202
215
.10.1016/j.nucengdes.2014.05.033
30.
Raj
,
M. N.
,
Velusamy
,
K.
, and
Maity
,
R. K.
,
2016
, “
Thermal Hydraulic Investigations on Porous Blockage in a Prototype Sodium Cooled Fast Reactor Fuel Pin Bundle
,”
Nucl. Eng. Des.
,
303
, pp.
88
108
.10.1016/j.nucengdes.2016.04.008
31.
Nguyen
,
T.
,
White
,
L.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2019
, “
Turbulent Flow and Vortex Characteristics in a Blocked Subchannel of a Helically Wrapped Rod Bundle
,”
Exp. Fluids
,
60
(
8
), p.
129
.10.1007/s00348-019-2778-2
32.
Nguyen
,
T.
,
White
,
L.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2019
, “
High-Fidelity Velocity Measurements in a Totally Blocked Interior Subchannel of a Wire-Wrapped 61-Pin Hexagonal Fuel Bundle
,”
Nucl. Eng. Des.
,
353
, p.
110234
.10.1016/j.nucengdes.2019.110234
33.
Chai
,
X.
,
Liu
,
X.
,
Xiong
,
J.
, and
Cheng
,
X.
,
2019
, “
CFD Analysis of Flow Blockage Phenomena in a LBE-Cooled 19-Pin Wire-Wrapped Rod Bundle
,”
Nucl. Eng. Des.
,
344
, pp.
107
121
.10.1016/j.nucengdes.2019.01.019
34.
Marinari
,
R.
,
Di Piazza
,
I.
,
Tarantino
,
M.
, and
Forgione
,
N.
,
2019
, “
Blockage Fuel Pin Simulator Experiments and Simulation
,”
Nucl. Eng. Des.
,
353
, p.
110215
.10.1016/j.nucengdes.2019.110215
35.
Chai
,
X.
,
Zhao
,
L.
,
Hu
,
W.
,
Yang
,
Y.
,
Liu
,
X.
,
Xiong
,
J.
, and
Cheng
,
X.
,
2020
, “
Numerical Investigation of Flow Blockage Accident in SFR Fuel Assembly
,”
Nucl. Eng. Des.
,
359
, p.
110437
.10.1016/j.nucengdes.2019.110437
36.
Sarkar
,
M.
,
Velusamy
,
K.
,
Munshi
,
P.
, and
Singh
,
O. P.
,
2020
, “
Analysis of Flow and Heat Transfer Through a Partially Blocked Fuel Subassembly of Fast Breeder Reactor
,”
Prog. Nucl. Energy
,
118
, p.
103142
.10.1016/j.pnucene.2019.103142
37.
Goth
,
N. E.
,
2017
, “
Design and PIV Measurements on a Wire-Wrapped 61-Rod Hexagonal Fuel Assembly Experimental Facility
,” M.S. thesis,
Texas A&M University
,
College Station, TX
.
38.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Lee
,
S.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2017
, “
PIV Measurements of Turbulent Flows in a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Int. J. Heat Fluid Flow
,
65
, pp.
47
59
.10.1016/j.ijheatfluidflow.2017.03.007
39.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2018
, “
Stereoscopic PIV Measurements of Near-Wall Flow in a Tightly Packed Rod Bundle With Wire Spacers
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
420
435
.10.1016/j.expthermflusci.2017.11.009
40.
Goth
,
N.
,
Jones
,
P.
,
Nguyen
,
T. D.
,
Vaghetto
,
R.
,
Hassan
,
Y.
,
Salpeter
,
N.
, and
Merzari
,
E.
,
2018
, “
PTV/PIV Measurements of Turbulent Flows in Interior Subchannels of a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Int. J. Heat Fluid Flow
,
71
, pp.
295
304
.10.1016/j.ijheatfluidflow.2018.03.021
41.
Vaghetto
,
R.
,
Jones
,
P.
,
Goth
,
N.
,
Childs
,
M.
,
Lee
,
S.
,
Thien Nguyen
,
D.
, and
Hassan
,
Y. A.
,
2018
, “
Pressure Measurements in a Wire-Wrapped 61-Pin Hexagonal Fuel Bundle
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
03114
.10.1115/1.4038086
42.
Baxi
,
C. B.
, and
Dalle Donne
,
M.
,
1981
, “
Helium Cooled Systems. The Gas-Cooled Fast Breeder Reactor
,”
Heat Transfer and Fluid Flow in Nuclear Systems
,
Pergamon Press Inc.
,
New York
, pp.
407
462
.
43.
Kirillov
,
P.
,
Bobkov
,
V.
,
Zhukov
,
A.
, and
Yuriev
,
Y.
,
2010
, “
Handbook on Thermohydraulic Calculations in Nuclear Engineering
,”
Thermohydraulic Processes in Nuclear Power Facilities
, Vol.
1
,
Energoatomizdat
,
Moscow, Russia
.
44.
Chen
,
S.
,
Chen
,
Y.
, and
Todreas
,
N.
,
2018
, “
The Upgraded Cheng and Todreas Correlation for Pressure Drop in Hexagonal Wire-Wrapped Rod Bundles
,”
Nucl. Eng. Des.
,
335
, pp.
356
373
.10.1016/j.nucengdes.2018.05.010
45.
Sierra Instruments
,
2019
, “
InnovaMass 240i/241i iSeries Technical Datasheet. Version iMass8
,” accessed Aug. 24, 2020, https://www.sierrainstruments.com/userfiles/file/datasheets/technical/240i-241i-innova-mass-datasheet.pdf?x=1495
46.
Andrade
,
E. D C.
,
1930
, “
The Viscosity of Liquids
,”
Nature
,
125
, pp.
309
310
.10.1038/125309b0
47.
Andrade
,
E. D C.
,
1934
, “
LVIII. A Theory of the Viscosity of Liquids–Part II
,”
Lond Edin Dublin Philos Mag J. Sci.
,
17
(
113
), pp.
698
732
.10.1080/14786443409462427
48.
Dymond
,
J. H.
, and
Malhotra
,
R.
,
1988
, “
The Tait Equation: 100 Years On
,”
Int. J. Thermophys.
,
9
(
6
), pp.
941
951
.10.1007/BF01133262
49.
Noushin
,
A.
, and
Hassan
,
Y. A.
,
2012
, “
An Investigation of Matched Index of Refraction Technique and its Application in Optical Measurements of Fluid Flow
,”
Exp. Fluids
,
53
, pp.
2011
2020
.https://doi.org/10.1007/s00348-012-1398-x
50.
Omega Engineering
,
2010
, “
User's Guide: FPT-6100, FPT-6200 and FPT-6300 High Accuracy Pitot Tubes
,”
Omega Engineering
.
51.
Darcy
,
H. P. G.
,
1856
, “
Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc.
,”
V. Dalamont
,
Paris, France
.
52.
Darcy
,
H. P. G.
,
1857
,
Recherches Expérimentales Relatives au Mouvement de L'eau Dans Les Tuyaux
, vol.
1
,
Mallet-Bachelier
,
Paris, France
.
53.
Brown
,
G. O.
,
2003
, “
The History of the Darcy-Weisbach Equation for Pipe Flow Resistance
,”
Environ. Water Resour. History Am. Soc. Civ. Eng.
,
38
, pp.
34
43
.
You do not currently have access to this content.