Abstract

This technical brief presents a flow separation mitigation device, called cavity-recirculator that can be used to control flow separation during shock wave–boundary layer interaction (SBLI) in high-speed intake flows. The cavity-recirculator isolates the flow separation bubble generated at the SBLI spot, thereby thinning the boundary layer and reducing the blockage of the inviscid stream in the duct. The device has a potential application in scramjet engine intakes/isolators. The cavity-recirculator was tested on a single-ramp-compression intake model in a hypersonic shock tunnel, in a freestream of Mach 8 (±0.1). The device operation and effectiveness were assessed by flow visualization and pressure measurements in the test model. The measurements and visualization displayed a mitigation of flow separation through an improved flow field with a single shock train and the absence of flow separation shock, in the inlet.

References

1.
Babinsky
,
H.
, and
Harvey
,
J. K.
,
2011
,
Shock Wave—Boundary Layer Interactions
,
Cambridge University Press
,
Cambridge, UK
, pp.
5
86
.
2.
Kim
,
H. D.
,
Matsuo
,
K.
, and
Setoguchi
,
T.
,
1996
, “
Investigation on Onset of Shock-Induced Separation
,”
Shock Waves
,
6
(
5
), pp.
275
286
.10.1007/BF02535741
3.
Murthy
,
S. N. B.
, and
Curran
,
E. T.
,
2001
,
Scramjet Propulsion, Progress in Astronautics and Aeronautics
,
AIAA, Inc.
,
Reston, VA
, pp.
447
504
.
4.
Lee
,
C. B.
, and
Wang
,
S.
,
1995
, “
Study of the Shock Motion in a Hypersonic Shock System/Turbulent Boundary Layer Interaction
,”
Exp. Fluids
,
19
(
3
), pp.
143
149
.10.1007/BF00189702
5.
Babinsky
,
H.
, and
Ogawa
,
H.
,
2008
, “
SBLI Control for Wings and Inlets
,”
Shock Waves
,
18
(
2
), pp.
89
96
.10.1007/s00193-008-0149-7
6.
Krogmann
,
P.
,
Stanewsky
,
E.
, and
Thiede
,
P.
,
1985
, “
Effects of Suction on Shock/Boundary-Layer Interaction and Shock-Induced Separation
,”
J. Aircr.
,
22
(
1
), pp.
37
42
.10.2514/3.45077
7.
Harloff
,
G. J.
, and
Smith
,
G. E.
,
1996
, “
Supersonic-Inlet Boundary-Layer Bleed Flow
,”
AIAA J.
,
34
(
4
), pp.
778
785
.10.2514/3.13140
8.
Slater
,
J. W.
,
2012
, “
Improvements in Modeling 90-Degree Bleed Holes for Supersonic Inlets
,”
J. Propul. Power
,
28
(
4
), pp.
773
781
.10.2514/1.B34333
9.
Ruban
,
A.
,
Menezes
,
V.
, and
Balasubramanian
,
S.
,
2018
, “
Boundary-Layer Control for Effective Hypersonic Intake
,”
J. Propul. Power
,
34
(
6
), pp.
1611
1614
.10.2514/1.B37066
10.
Hamed
,
A.
,
Yeuan
,
J. J.
, and
Shih
,
S. H.
,
1995
, “
Shock-Wave/Boundary-Layer Interactions With Bleed—Part 1: Effect of Slot Angle
,”
J. Propul. Power
,
11
(
6
), pp.
1231
1235
.10.2514/3.23962
11.
Hamed
,
A.
,
Yeuan
,
J. J.
, and
Shih
,
S. H.
,
1995
, “
Shock-Wave/Boundary-Layer Interactions With Bleed—Part 2: Effect of Slot Location
,”
J. Propul. Power
,
11
(
6
), pp.
1236
1241
.10.2514/3.23963
12.
Tam
,
C. J.
,
Eklund
,
D.
,
Behdadnia
,
R.
, and
Jackson
,
T.
,
2005
, “
Investigation of Boundary Layer Bleed for Improving Scramjet Isolator Performance
,”
AIAA Paper No.
2005
3286
.
13.
Délery
,
J.
, and
Bur
,
R.
,
2000
, “
The Physics of Shock Wave/Boundary Layer Interaction Control: Last Lessons Learned
,”
ECCOMAS 2000
,
Barcelona, Spain
, Sept.
11
14
.10.13140/2.1.4478.8169
14.
McCormick
,
D. C.
,
1993
, “
Shock/Boundary-Layer Interaction Control With Vortex Generators and Passive Cavity
,”
AIAA J.
,
31
(
1
), pp.
91
96
.10.2514/3.11323
15.
Jaiman
,
R. K.
,
Loth
,
E.
, and
Dutton
,
J. C.
,
2004
, “
Simulations of Normal Shock-Wave/Boundary-Layer Interaction Control Using Mesoflaps
,”
J. Propul. Power
,
20
(
2
), pp.
344
352
.10.2514/1.9258
16.
Gunasekaran
,
H.
,
Thangaraj
,
T.
,
Jana
,
T.
, and
Kaushik
,
M.
,
2020
, “
Effects of Wall Ventilation on the Shock-Wave/Viscous-Layer Interactions in a Mach 2.2 Intake
,”
Processes
,
8
(
2
), p.
208
.10.3390/pr8020208
17.
Talsaniya
,
H. M.
,
Menezes
,
V.
,
Nithin
,
B.
, and
Kulkarni
,
V.
,
2015
, “
Visualization of Incipient Flow Separation Condition on Hypersonic Shock–Boundary Layer Interaction
,”
J. Vis.
,
18
(
4
), pp.
611
618
.10.1007/s12650-015-0274-1
18.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow
,
McGraw-Hill Education
,
New York
, pp.
100
144
.
19.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
27
.
You do not currently have access to this content.