Abstract

The origin, formation mechanism, and dynamics of suction vortices in a pump sump have been clarified by large eddy simulation (LES) applied to two different computational models. The first one is a pump-sump model with uniform flow entering a water channel of rectangular cross section and a vertical suction (outlet) pipe installed at its downstream end. LES with different wall boundary conditions have revealed that the origin of a submerged vortex is the mean shear of the approaching boundary layers that develop on the bottom and side walls of the sump. Detailed investigations have revealed that deviation of the mean flow triggers conversion of the vorticity axis to the vertical direction. The local acceleration of the vertical flow stretches the aforementioned vertical vortex, which results in the formation of a submerged vortex. The second one is a simplified computational model composed of a paraboloid of revolution and aims to accurately simulate the stretch of the viscous core of a submerged vortex that has appeared under the suction pipe of the pump-sump model. The differences between the models, especially predictions of the minimum pressure, imply that cavitation could have been initiated in the viscous core, if it had been taken into account, as is observed in the pump-sump experiment at the same condition. Parametric studies with different initial swirl numbers from 0.12 to 16.3 have clarified the behavior of the submerged vortex. It was found that a strong submerged vortex appears only at a relatively small range of the swirl numbers from 1.25 to 3.

References

1.
Ansar
,
M.
, and
Nakato
,
T.
,
2001
, “
Experimental Study of 3D Pump-Intake Flows With and Without Cross Flow
,”
J. Hydraul. Eng.
,
127
(
10
), pp.
825
834
.10.1061/(ASCE)0733-9429(2001)127:10(825)
2.
Ansar
,
M.
,
Nakato
,
T.
, and
Constantinescu
,
G. S.
,
2002
, “
Numerical Simulations of Inviscid Three-Dimensional Flows at Single- and Dual-Pump Intakes
,”
J. Hydraul. Res.
,
40
(
4
), pp.
461
470
.10.1080/00221680209499888
3.
Constantinescu
,
G. S.
, and
Patel
,
V. C.
,
2000
, “
Role of Turbulence Model in Prediction of Pump-Bay Vortices
,”
J. Hydraul. Eng.
,
126
(
5
), pp.
387
391
.10.1061/(ASCE)0733-9429(2000)126:5(387)
4.
Okamura
,
T.
,
Kamemoto
,
K.
, and
Matsui
,
J.
,
2007
, “
CFD Prediction and Modeling Experiment of Suction Vortices in Pump Sump
,” Proceedings of the Nineth AICFM, Jeju, Korea, Oct. 16–19, No.
AICFM9-053
. https://www.researchgate.net/publication/36425378_CFD_prediction_and_model_experiment_on_suction_vortices_in_pump_sump
5.
Shin
,
B.
,
2018
, “
Numerical Study of Effect of Flow Rate on Free Surface Vortex in Suction Sump
,”
Trans. JSCES
, 2018, p.
20180010
.https://www.jstage.jst.go.jp/article/jsces/2018/0/2018_20180010/_pdf
6.
Wu
,
P.
,
Munoz
,
D. H.
,
Constantinescu
,
G.
, and
Qian
,
C.
,
2019
, “
Two-Phase Flow DES and URANS Simulations of Pump-Intake Bay Vortices
,”
J. Hydraul. Res.
, epub.10.1080/00221686.2018.1555552
7.
Strasser
,
W.
,
2008
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011101
.10.1115/1.2816008
8.
Tokyay
,
T. E.
, and
Constantinescu
,
S. G.
,
2006
, “
Validation of a Large Eddy Simulation Model to Simulate Flow in Pump Intakes of Realistic Geometry
,”
J. Hydraul. Eng.
,
132
(
12
), pp.
1303
1315
.10.1061/(ASCE)0733-9429(2006)132:12(1303)
9.
Nakayama
,
A.
, and
Hisasue
,
N.
,
2010
, “
Large Eddy Simulation of Vortex Flow in Intake Channel of Hydropower Facility
,”
J. Hydraul. Res.
,
48
(
4
), pp.
415
427
.10.1080/00221686.2010.491644
10.
Chuang
,
W. L.
,
Hsiao
,
S. C.
, and
Hwang
,
K. S.
,
2014
, “
Numerical and Experimental Study of Pump Sump Flows
,”
Math. Probl. Eng.
,
2014
, pp.
1
20
.10.1155/2014/735416]
11.
Pan
,
Q.
,
Zhao
,
R.
,
Wang
,
X.
,
Shi
,
W.
, and
Zhang
,
D.
,
2019
, “
LES Study of Transient Behavior and Turbulent Characteristics of Free-Surface and Floor-Attached Vortices in Pump Sump
,”
J. Hydraul. Res.
,
57
(
5
), pp.
733
743
.10.1080/00221686.2018.1534284
12.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
A3
, pp.
1760
1765
.
13.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid Scale Closure Method
,”
Phys. Fluids
,
A4
, pp.
633
635
.10.1063/1.858280
14.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1993
, “
A Dynamic Mixed Subgrid-Scale Model and Its Application to Turbulent Recirculating Flows
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
12
), pp.
3186
3196
.10.1063/1.858675
15.
Zhao
,
H.
, and
Voke
,
P. R.
,
1996
, “
A Dynamic Subgrid-Scale Model for Low-Reynolds-Number Channel Flow
,”
Int. J. Numer. Method Fluid
,
23
(
1
), pp.
19
27
.10.1002/(SICI)1097-0363(19960715)23:1<19::AID-FLD407>3.0.CO;2-E
16.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
,
2003
, “
An Overset Finite-Element Large-Eddy-Simulation Method With Application to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
32
43
.10.1115/1.1530637
17.
Kato
,
C.
,
Yamade
,
Y.
,
Wang
,
H.
,
Guo
,
Y.
,
Miyazawa
,
M.
,
Takaishi
,
T.
, and
Takano
,
Y.
,
2005
, “
Numerical Prediction of Sound Generated From Flows With a Low Mach Number
,”
Comput. Fluids
,
36
(
1
), pp.
53
68
.10.1016/j.compfluid.2005.07.006
18.
Fambri
,
F.
, and
Dumbser
,
M.
,
2016
, “
Spectral Semi-Implicit and Space–Time Discontinuous Galerkin Methods for the Incompressible Navier–Stokes Equations on Staggered Cartesian Grids
,”
Appl. Numer. Math.
,
110
, pp.
41
74
.10.1016/j.apnum.2016.07.014
19.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
20.
Yamanishi
,
N.
,
Fukao
,
S.
,
Qiao
,
X.
,
Kato
,
C.
, and
Tsujimoto
,
Y.
,
2007
, “
LES Simulation of Backflow Vortex Structure at the Inlet of an Inducer
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
587
594
.10.1115/1.2717613
21.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), pp.
1
11
.10.1115/1.4033423
22.
Makihara
,
T.
,
Kitamura
,
T.
,
Yamashita
,
T.
,
Maeda
,
K.
,
Kato
,
C.
,
Takayama
,
T.
,
Yamamoto
,
K.
,
Yamade
,
Y.
, and
Suzuki
,
Y.
,
2016
, “
Identification of Vortical Structure That Drastically Worsens Aerodynamic Drag on a 2-Box Vehicle Using Large-Scale Simulations
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
9
(
2
), pp.
592
602
.10.4271/2016-01-1585
23.
Yamashita
,
T.
,
Makihara
,
T.
,
Saito
,
Y.
,
Kato
,
C.
,
Takayama
,
R.
,
Takayama
,
T.
, and
Yamade
,
Y.
,
2018
, “
Effects of Moving Ground and Rotating Wheels on Aerodynamic Drag of a Two-Box Vehicle
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
11
(
5
), pp.
415
428
.10.4271/2018-01-0730
24.
Nishikawa
,
T.
,
Yamade
,
Y.
,
Sakuma
,
M.
, and
Kato
,
C.
,
2013
, “
Fully Resolved Large Eddy Simulation as Alternative to Towing Tank Resistance Tests- 32 Billion Cells Computation on K Computer
,”
16th Numerical Towing Tank Symposium (NuTTS'13)
, Duisburg, Germany, Sept. 2–4, pp.
102
107
.
25.
Nishikawa
,
T.
,
Yamade
,
Y.
,
Sakuma
,
M.
, and
Kato
,
C.
,
2012
, “
Application of Fully-Resolved Large Eddy Simulation to KVLCC2—Bare Hull Double Model at Model Ship Reynolds Number
,”
J. Jpn. Soc. Nav. Archit. Ocean Eng.
,
16
, pp.
1
9
.10.2534/jjasnaoe.16.1
26.
Akiyama
,
O.
, and
Kato
,
C.
,
2017
, “
Numerical Investigations of Unsteady Flows and Particle Behavior in a Cyclone Separator
,”
ASME J. Fluids Eng.
,
139
(
9
), pp.
1
11
.10.1115/1.4036589
27.
Howarth
,
L.
, and
Bairstow
,
L.
,
1938
, “
On the Solution of the Laminar Boundary Layer Equations
,”
Proc. R. Soc. London A
,
164
(
919
), pp.
547
579
.10.1098/rspa.1938.0037
28.
Burgers
,
J. M.
,
1948
, “
A Mathematical Model Illustrating the Theory of Turbulence
,”
Adv. Appl. Mech.
,
1
, pp.
171
199
.10.1016/S0065-2156(08)70100-5
You do not currently have access to this content.