Abstract

The partially averaged Navier–Stokes (PANS) approach has emerged as a viable scale-resolving bridging method over the last decade. Conventional PANS method, based on the linear eddy viscosity closure, overcomes the scale-resolving inadequacies of Reynolds-averaging but still suffers from limitations arising from linear constitutive modeling of turbulent stresses. Linear PANS has been evaluated in a variety of complex flow fields, including the benchmark case of flow around a sphere. In this work, the authors assess the potential of nonlinear eddy viscosity closure and further extend the evaluation of nonlinear closure in predicting thermal characteristics (besides hydrodynamics) of flow past a sphere. The presented evaluation has been performed on the basis of various surface-related and wake-related quantities. Our results are compared against available experimental and direct numerical simulation (DNS)/large eddy simulation studies. Our study shows that for the same value of the filter-control parameters, nonlinear PANS performs significantly better than linear PANS.

References

1.
Achenbach
,
E.
,
1972
, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
(
3
), pp.
565
575
.10.1017/S0022112072000874
2.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
2
), pp.
209
221
.10.1017/S0022112074000644
3.
Taneda
,
S.
,
1978
, “
Visual Observations of the Flow Past a Sphere at Reynolds Numbers Between 104 and 106
,”
J. Fluid Mech.
,
85
(
1
), pp.
187
192
.10.1017/S0022112078000580
4.
Constantinescu
,
G.
, and
Squires
,
K.
,
2003
, “
LES and DES Investigations of Turbulent Flow Over a Sphere at Re = 10,000
,”
Flow Turbul. Combust.
,
70
(
1–4
), pp.
267
298
.10.1023/B:APPL.0000004937.34078.71
5.
Rodríguez
,
I.
,
Lehmkuhl
,
O.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2013
, “
Flow Dynamics in the Turbulent Wake of a Sphere at Sub-Critical Reynolds Numbers
,”
Comput. Fluids
,
80
, pp.
233
243
.10.1016/j.compfluid.2012.03.009
6.
Bazilevs
,
Y.
,
Yan
,
J.
,
de Stadler
,
M.
, and
Sarkar
,
S.
,
2014
, “
Computation of the Flow Over a Sphere at Re = 3700: A Comparison of Uniform and Turbulent Inflow Conditions
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121003
.10.1115/1.4028754
7.
de Stadler
,
M. B.
,
Rapaka
,
N. R.
, and
Sarkar
,
S.
,
2014
, “
Large Eddy Simulation of the Near to Intermediate Wake of a Heated Sphere at Re = 10,000
,”
Int. J. Heat Fluid Flow
,
49
, pp.
2
10
.10.1016/j.ijheatfluidflow.2014.05.013
8.
Rodriguez
,
I.
,
Lehmkuhl
,
O.
,
Soria
,
M.
,
Gómez
,
S.
,
Domínguez-Pumar
,
M.
, and
Kowalski
,
L.
,
2019
, “
Fluid Dynamics and Heat Transfer in the Wake of a Sphere
,”
Int. J. Heat Fluid Flow
,
76
, pp.
141
153
.10.1016/j.ijheatfluidflow.2019.02.004
9.
Craft
,
T.
,
Launder
,
B.
, and
Suga
,
K.
,
1997
, “
Prediction of Turbulent Transitional Phenomena With a Nonlinear Eddy-Viscosity Model
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
15
28
.10.1016/S0142-727X(96)00145-2
10.
Chesnakas
,
C. J.
,
Taylor
,
D.
, and
Simpson
,
R. L.
,
1997
, “
Detailed Investigation of the Three-Dimensional Separation About a 6: 1 Prolate Spheroid
,”
AIAA J.
,
35
(
6
), pp.
990
999
.10.2514/2.208
11.
Wetzel
,
T.
,
Simpson
,
R.
, and
Chesnakas
,
C.
,
1998
, “
Measurement of Three-Dimensional Crossflow Separation
,”
AIAA J.
,
36
(
4
), pp.
557
564
.10.2514/2.429
12.
Krajnović
,
S.
,
Minelli
,
G.
, and
Basara
,
B.
,
2016
, “
Partially-Averaged Navier–Stokes Simulations of Two Bluff Body Flows
,”
Appl. Math. Comput.
,
272
, pp.
692
706
.10.1016/j.amc.2015.03.136
13.
Girimaji
,
S. S.
,
2006
, “
Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds–Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
413
421
.10.1115/1.2151207
14.
Basu
,
D.
,
Hamed
,
A.
, and
Das
,
K.
,
2005
, “
Des, Hybrid RANS/LES and PANS Models for Unsteady Separated Turbulent Flow Simulations
,”
ASME
Paper No. FEDSM2005-77421. 10.1115/FEDSM2005-77421
15.
Basu
,
D.
,
Hamed
,
A.
, and
Das
,
K.
,
2007
, “
Assessment of Partially Averaged Navier Stokes (PANS) Multiscale Model in Transonic Turbulent Separated Flows
,”
ASME Paper No. FEDSM2007-37630.
16.
Girimaji
,
S.
, and
Srinivasan
,
R.
,
2009
, “
Partially-Averaged Navier–Stokes (PANS) Simulations of Ramjet/Scramjet Mixing Environment
,”
AIAA
Paper No. 134.
17.
Basara
,
B.
,
Krajnovic
,
S.
,
Pavlovic
,
Z.
, and
Ringqvist
,
P.
,
2011
, “
Performance Analysis of Partially-Averaged Navier–Stokes Method for Complex Turbulent Flows
,”
AIAA
Paper No. 3106.
18.
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2018
, “
Evaluation of Partially Averaged Navier–Stokes Method in Simulating Flow Past a Sphere
,”
J. Appl. Fluid Mech.
,
11
(
5
), pp.
1333
1348
.10.29252/jafm.11.05.28758
19.
Chakraborty
,
K.
,
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2020
, “
An Openfoam-Based Extension of Low-Re kε Model to the Partially-Averaged Navier–Stokes (PANS) Methodology for Simulating Separated Flows With Heat Transfer
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041501
.10.1115/1.4045209
20.
Pereira
,
F. S.
,
Eça
,
L.
,
Vaz
,
G.
, and
Girimaji
,
S. S.
,
2019
, “
On the Simulation of the Flow Around a Circular Cylinder at Re =140,000
,”
Int. J. Heat Fluid Flow
,
76
, pp.
40
56
.10.1016/j.ijheatfluidflow.2019.01.007
21.
Wilcox
,
D.
, and
Rubesin
,
M.
,
1980
, “
Progress in Turbulence Modeling for Complex Flow Fields Including Effects of Compressibility
,” Report No.
NASA-TP-1517, A-7916
.https://ntrs.nasa.gov/search.jsp?R=19800012043
22.
Gatski
,
T.
, and
Speziale
,
C.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
23.
Shih
,
T.
,
Zhu
,
J.
, and
Lumley
,
J.
,
1993
, “
A Realizable Reynolds Stress Algebraic Equation Model
,” NASA, Washington, DC, Technical Memorandum No. 105993.
24.
Apsley
,
D.
,
Chen
,
W.
,
Leschziner
,
M.
, and
Lien
,
F.
,
1997
, “
Non-Linear Eddy-Viscosity Modelling of Separated Flows
,”
J. Hydraulic Res.
,
35
(
6
), pp.
723
748
.10.1080/00221689709498386
25.
Gatski
,
T.
, and
Jongen
,
T.
,
2000
, “
Nonlinear Eddy Viscosity and Algebraic Stress Models for Solving Complex Turbulent Flows
,”
Prog. Aerosp. Sci.
,
36
(
8
), pp.
655
682
.10.1016/S0376-0421(00)00012-9
26.
Mereu
,
R.
,
Colombo
,
E.
, and
Inzoli
,
F.
,
2009
, “
Non Linear Eddy Viscosity Model Applied to u-Bend Industrial Geometry
,”
ASME
Paper No. IMECE2009-11673. 10.1115/IMECE2009-11673
27.
Zhang
,
Y.
,
Chen
,
G.
, and
Xu
,
J.
,
2020
, “
An Eddy-Viscosity Model Sensitized to Curvature and Wall-Roughness Effects for Reynolds-Averaged Closure
,”
ASME J. Fluids Eng.
,
142
(
4
), p. 041503.10.1115/1.4045611
28.
Liu
,
J.
,
Zuo
,
Z.
,
Wu
,
Y.
,
Zhuang
,
B.
, and
Wang
,
L.
,
2014
, “
A Nonlinear Partially-Averaged Navier–Stokes Model for Turbulence
,”
Comput. Fluids
,
102
, pp.
32
40
.10.1016/j.compfluid.2014.06.016
29.
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2019
, “
Evaluation of PANS Method in Conjunction With Non-Linear Eddy Viscosity Closure Using Openfoam
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
3
), pp.
949
980
.10.1108/HFF-09-2018-0529
30.
Girimaji
,
S. S.
,
Jeong
,
E.
, and
Srinivasan
,
R.
,
2006
, “
Partially Averaged Navier–Stokes Method for Turbulence: Fixed Point Analysis and Comparison With Unsteady Partially Averaged Navier–Stokes
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
422
429
.10.1115/1.2173677
31.
Zhitkevich
,
L.
, and
Simchenko
,
L.
,
1966
, “
Investigation of Local and Average Heat Transfer Between a Sphere and an Airstream
,”
J. Eng. Phys.
,
11
(
1
), pp.
7
9
.10.1007/BF00829920
32.
Germano
,
M.
,
1992
, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
,
238
, pp.
325
336
.10.1017/S0022112092001733
33.
Boussinesq
,
J.
,
1877
,
Essai Sur la Théorie Des Eaux Courantes
,
Imprimerie Nationale, Paris, France.
34.
Argyropoulos
,
C.
, and
Markatos
,
N.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.10.1016/j.apm.2014.07.001
35.
Hellsten
,
A.
, and
Wallin
,
S.
,
2009
, “
Explicit Algebraic Reynolds Stress and Non-Linear Eddy-Viscosity Models
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
349
361
.10.1080/10618560902776828
36.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Energy
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
37.
Speziale
,
C.
,
1987
, “
On Nonlinear kl and kε Models of Turbulence
,”
J. Fluid Mech.
,
178
, pp.
459
475
.10.1017/S0022112087001319
38.
Rubinstein
,
R.
, and
Barton
,
J.
,
1990
, “
Nonlinear Reynolds Stress Models and the Renormalization Group
,”
Phys. Fluids A Fluid Dyn.
,
2
(
8
), pp.
1472
1476
.10.1063/1.857595
39.
Craft
,
T.
,
Launder
,
B.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.10.1016/0142-727X(95)00079-6
40.
Ramesh
,
V.
,
Vengadesan
,
S.
, and
Narasimhan
,
J.
,
2006
, “
3D Unsteady Rans Simulation of Turbulent Flow Over Bluff Body by Non-Linear Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
6
), pp.
660
673
.10.1108/09615530610679048
41.
Colombo
,
E.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2008
, “
Capability of Non Liner Eddy Viscosity Model in Predicting Complex Flows
,” HEFAT, Pretoria, South Africa, June 30–July 2, Paper No. CE2.
42.
Ishihara
,
T.
, and
Hibi
,
K.
,
2002
, “
Numerical Study of Turbulent Wake Flow Behind a Three-Dimensional Steep Hill
,”
Wind Struct.
,
5
(
2_3_4
), pp.
317
328
.10.12989/was.2002.5.2_3_4.317
43.
Yang
,
X.
,
Ma
,
H.
, and
Huang
,
Y.
,
2005
, “
Prediction of Homogeneous Shear Flow and a Backward-Facing Step Flow With Some Linear and Non-Linear kε Turbulence Models
,”
Commun. Nonlinear Sci. Numer. Simul.
,
10
(
3
), pp.
315
328
.10.1016/j.cnsns.2003.07.001
44.
Chen
,
H.
, and
Patel
,
V.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.10.2514/3.9948
45.
Jeong
,
E.
, and
Girimaji
,
S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations—Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121203
.10.1115/1.4003153
46.
Ranjan
,
P.
, and
Dewan
,
A.
,
2015
, “
Partially Averaged Navier Stokes Simulation of Turbulent Heat Transfer From a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
89
, pp.
251
266
.10.1016/j.ijheatmasstransfer.2015.05.029
47.
Girimaji
,
S. S.
, and
Abdol-Hamid
,
K. S.
,
2005
, “
Partially Averaged Navier–Stokes Model for Turbulence: Implementation and Validation
,”
AIAA
Paper No. 502.
48.
Lakshmipathy
,
S.
,
2009
, “
Partially Averaged Navier–Stokes Method for Turbulence Closures: Characterization of Fluctuations and Extension to Wall Bounded Flows
,”
Doctor thesis
, Texas A&M University, Texas A&M University, College Station, TX.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2009-05-722/LAKSHMIPATHY-DISSERTATION.pdf?sequence=2&isAllowed=y
49.
Crippa
,
S.
,
2011
, “
Improvement of Unstructured Computational Fluid Dynamic Simulations Though Novel Mesh Generation Methodologies
,”
J. Aircr.
,
48
(
3
), pp.
1036
1044
.10.2514/1.C031219
50.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” No.
19890015184
.https://ntrs.nasa.gov/search.jsp?R=19890015184
51.
Suman
,
S.
, and
Girimaji
,
S.
,
2010
, “
Velocity Gradient Invariants and Local Flow-Field Topology in Compressible Turbulence
,”
J. Turbul.
,
11
(
2
), p.
N2
.10.1080/14685241003604751
52.
Lakshmipathy
,
S.
, and
Girimaji
,
S.
,
2006
, “
Partially-Averaged Navier–Stokes Method for Turbulent Flows: Kw Model Implementation
,”
AIAA
Paper No. 2006-119.10.2514/6.2006-119
53.
Lakshmipathy
,
S.
, and
Girimaji
,
S. S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations: Flow Past a Circular Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121202
.10.1115/1.4003154
54.
Jones
,
D.
, and
Clarke
,
D.
,
2008
, “
Simulation of Flow Past a Sphere Using the Fluent Code
,” Defense Science and Technology Organization Victoria (Australia) Maritime Platforms Division, Victoria, Australia,
epub
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a494935.pdf
You do not currently have access to this content.