Abstract

Computational fluid dynamics (CFD) results are presented for turbulent flow and heat transfer in a plane channel. This study investigates an idealized fully developed planar channel flow case for which the mean velocity gradient is nonzero only in the wall-normal direction, and the mean temperature gradient is imposed to be uniform and nonzero in the streamwise or spanwise direction. The objective is to evaluate the accuracy of turbulent heat flux predictions using hybrid Reynolds-averaged Navier–Stokes (RANS)–large eddy simulation (LES) models in wall-bounded flows. Results are obtained at Prandtl number of 0.71 and Reynolds number of 180 based on wall friction velocity and channel half-height and are compared to available direct numerical simulation (DNS) data and to a well-validated RANS model (k–ω shear-stress transport (SST)). The specific hybrid RANS–LES (HRL) models investigated include delayed detached eddy simulation (DDES), improved delayed detached eddy simulation (IDDES), and dynamic hybrid RANS–LES (DHRL). The DHRL model includes both the standard formulation that has been previously documented in the literature as well as a modified version specifically developed to improve predictive capability for flows in which the mean velocity and mean temperature gradients are not closely aligned. The modification consists of using separate RANS-to-LES blending parameters in the momentum and energy equations. Results are interrogated to evaluate the performance of the three different model types and specifically to evaluate the performance of the new modified DHRL variant compared with the baseline version.

References

1.
Black
,
A. W.
, and
Sparrow
,
E. M.
,
1967
, “
Experiments on Turbulent Heat Transfer in a Tube With Circumferentially Varying Thermal Boundary Conditions
,”
ASME J. Heat Transfer
,
89
(
3
), pp.
258
268
.10.1115/1.3614375
2.
Quaramby
,
A.
, and
Quirk
,
R.
,
1972
, “
Measurements of the Radial and Tangential Eddy Diffusivities of Heat and Mass in Turbulent Flow in a Plain Tube
,”
Int. J. Heat Mass Transfer
,
15
(
11
), pp.
2309
2327
.10.1016/0017-9310(72)90049-X
3.
Maekawa
,
H.
,
Kawada
,
Y.
,
Kobayashi
,
M.
, and
Yamaguchi
,
H.
,
1991
, “
An Experimental Study on the Spanwise Eddy Diffusivity of Heat in a Flat-Plate Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
1991
1998
.10.1016/0017-9310(91)90210-6
4.
Kim
,
J.
, and
Moin
,
P.
,
1989
,
Transport of Passive Scalars in a Turbulent Channel Flow in Turbulent Shear Flows VI
,
J. C.
Andre
, ed.,
Springer
,
Berlin
, pp.
85
96
.
5.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
,
1992
, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
598
606
.10.1115/1.2911323
6.
Lyons
,
S. L.
,
Hanratty
,
T. J.
, and
McLaughlin
,
J. B.
,
1991
, “
Direct Numerical Simulation of a Passive Heat Transfer in a Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1149
1161
.10.1016/0017-9310(91)90024-9
7.
Lu
,
D. M.
, and
Hetsroni
,
G.
,
1995
, “
Direct Numerical Simulation of a Turbulent Open Channel Flow With Passive Heat Transfer
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3241
3251
.10.1016/0017-9310(95)00048-E
8.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
196
207
.10.1016/S0142-727X(99)00014-4
9.
Kawamura
,
H.
, and
Kawamoto
,
N.
,
1998
, “
DNS and Modeling of Turbulent Heat Transfer in Channel With Spanwise Mean Temperature Gradient
,”
13th Australian Fluid Mechanics Conference
,
Monash University
, Melbourne, Australia, Dec. 13–18, pp.
611
612
.https://people.eng.unimelb.edu.au/imarusic/proceedings/13/Kawamoto.pdf
10.
Matsubara
,
K.
,
Kobayashi
,
M.
,
Maekawa
,
H.
, and
Suzuki
,
K.
,
1998
, “
DNS of Spanwise Turbulent Heat Transfer in a Channel
,”
Turbulent Heat Transfer 2
, Vol.
1
, Manchester, UK, May 31–June 4, pp.
1.23
1.32
.
11.
Hirsch
,
C.
, and
Tartinville
,
B.
,
2009
, “
Reynolds-Averaged Navier-Stokes Modeling for Industrial Applications and Some Challenging Issues
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
295
303
.10.1080/10618560902773379
12.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.10.1016/S0142-727X(00)00007-2
13.
Piomelli
,
U.
,
Balaras
,
E.
,
Pasinato
,
H.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
,
2003
, “
The Inner-Outer Layer Interface in Large-Eddy Simulations With Wall-Layer Models
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
538
550
.10.1016/S0142-727X(03)00048-1
14.
Schlüter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2004
, “
Large Eddy Simulation Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
,
42
(
3
), pp.
478
484
.10.2514/1.3488
15.
Bhushan
,
S.
, and
Walters
,
D. K.
,
2012
, “
A Dynamic Hybrid RANS/LES Modelling Framework
,”
Phys. Fluids
,
24
(
1
), p.
015103
.10.1063/1.3676737
16.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite Volume CFD Simulations
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
643
667
.10.1007/s10494-013-9481-9
17.
Shobayo
,
O. O.
, and
Walters
,
D.
,
2018
, “
Evaluation of Performance and Code-to-Code Variation of a Dynamic Hybrid RANS/LES Model for Simulation of Backward-Facing Step Flow
,”
ASME
Paper No. FEDSM2018-83160.10.1115/FEDSM2018-83160
18.
Hassan
,
E.
,
Peterson
,
D. M.
,
Walters
,
D. K.
, and
Luke
,
E.
,
2016
, “
Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation of a Supersonic Cavity
,”
AIAA J. Propul. Power
,
32
(
6
), pp.
1343
1352
.10.2514/1.B36132
19.
Hassan
,
E.
,
Peterson
,
D. M.
,
Walters
,
D. K.
, and
Luke
,
E. A.
,
2019
, “
Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation of a Supersonic Cavity: Chemistry Effects
,”
AIAA J. Propul. Power
,
35
(
1
), pp.
201
212
.10.2514/1.B37092
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1999
, “
Monotonically Integrated Large Eddy Simulation of Free Shear Flows
,”
AIAA J.
,
37
(
5
), pp.
544
556
.10.2514/2.772
22.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
, pp.
191
195
.10.1007/s00162-006-0015-0
23.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
2008
, “
A Hybrid RANS-LES Model With Delayed DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
24.
Luke
,
E. A.
,
Tong
,
X.
, and
Chamberlain
,
R.
,
2016
, “
FlowPsi: An Ideal Gas Flow Solver—The User Guide
,”
epub
, pp.
29
40
.https://github.com/libm3l/FlowPsi
25.
Toro
,
E. F.
,
Spruce
,
M.
, and
Speares
,
M.
,
1994
, “
Restoration of the Contact Surface in the Hll-Riemann Solver
,”
Shock Waves
,
4
(
1
), pp.
25
34
.10.1007/BF01414629
26.
Poe
,
N. M. W.
, and
Walters
,
D. K.
,
2011
, “
A Low-Dissipation Optimization-Based Gradient Reconstruction (OGRE) in Finite Volume Simulations
,”
ASME
Paper No. AJK2011-01013.10.1115/AJK2011-01013
27.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
482
491
.10.1016/S0142-727X(98)10026-7
You do not currently have access to this content.