Abstract
Couette flow with nonhomogeneous partial-slip stripes on one plate is studied. Drag and flowrate are found by an efficient eigenfunction expansion and point match method. Longitudinal motion (parallel to the stripes) experiences lower drag than transverse motion. As the gap width between the two plates approaches zero, the drag increases to a finite value if the stripes have partial slip, as comparison to the infinite value for no slip. Analysis of the region near the junction of a perfect stick-slip boundary shows a weak stress singularity while there is no singularity for partial slip junctions.
Issue Section:
Technical Briefs
References
1.
Choi
,
C. H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
, 2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,” Phys. Fluids
,
15
(10
), p. 2897
.10.1063/1.16054252.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
, 2004
, “
Laminar Drag Reduction in Microchannels Using Ultra-Hydrophobic Surfaces
,” Phys. Fluids
,
16
(12
), pp. 4635
–4643
.10.1063/1.18120113.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
, 2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,” Phys. Fluids
,
21
(8
), p. 085103
.10.1063/1.32078854.
Song
,
D.
,
Daniello
,
R. J.
, and
Rothstein
,
J. P.
, 2014
, “
Drag Reduction Using Superhydrophobic Sanded Teflon Surfaces
,” Exp. Fluids
,
55
, p. 4783
.5.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
, 2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,” Naturwissenshaften
,
87
(4
), pp. 157
–171
.10.1007/s0011400506966.
Jung
,
Y. C.
, and
Bhushan
,
B.
, 2010
, “
Biometric Structures for Fluid Drag Reduction in Laminar and Turbulent Flows
,” J. Phys. Cond. Matt.
,
22
(3
), p. 035104
.10.1088/0953-8984/22/3/0351047.
Lee
,
J.
,
Kim
,
H.
, and
Park
,
H.
, 2018
, “
Effects of Superhydrophobic Surfaces on the Flow Around an NACA0012 Hydrofoil at Low Reynolds Numbers
,” Exp. Fluids
,
59
, p. 111
.10.1007/s00348-018-2564-68.
Sooraj
,
P.
,
Jain
,
S.
, and
Agrawal
,
A.
, 2019
, “
Flow Over Hydrofoils With Varying Hydrophobicity
,” Exp. Therm. Fluid Sci.
,
102
, pp. 479
–492
.10.1016/j.expthermflusci.2018.12.0219.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S. J.
, 2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,” Rep. Prog. Phys.
,
68
(12
), pp. 2859
–2897
.10.1088/0034-4885/68/12/R0510.
Rothstein
,
J.
, 2010
, “
Slip on Superhydrophobic Surfaces
,” Ann. Rev. Fluid Mech.
,
42
(1
), pp. 89
–109
.10.1146/annurev-fluid-121108-14555811.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
, 2016
, “
Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review
,” Exp. Fluids
,
57
(12
), p. 176
.10.1007/s00348-016-2264-z12.
Shu
,
J. J.
,
Teo
,
J. B. M.
, and
Chan
,
W. K.
, 2017
, “
Fluid Velocity Slip and Temperature Jump at a Solid Surface
,” ASME Appl. Mech. Rev.
,
69
(2
), p. 020801
.10.1115/1.403619113.
Philip
,
J. R.
, 1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,” J. Appl. Math. Phys.
,
23
(3
), pp. 353
–372
.10.1007/BF0159547714.
Lauga
,
E.
, and
Stone
,
H. A.
, 2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,” J. Fluid Mech.
,
489
, pp. 55
–77
.10.1017/S002211200300469515.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
É.
,
Bocquet
,
L.
, and
Barrat
,
J.-L.
, 2004
, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,” Eur. J. Phys. E
,
15
(4
), pp. 427
–438
.10.1140/epje/i2004-10061-916.
Belyaev
,
A. V.
, and
Vinogradova
,
O. I.
, 2010
, “
Effective Slip in Pressure-Driven Flow Past Superhydrophobic Stripes
,” J. Fluid Mech.
,
652
, pp. 489
–499
.10.1017/S002211201000074117.
Asmolov
,
E. S.
,
Schmieschek
,
S. M. P.
,
Harting
,
J. D. R.
, and
Vinogradova
,
O. I.
, 2013
, “
Flow Pas Superhydrophobic Surfaces With Cosine Variation in Local Slip Length
,” Phys. Rev. E
,
87
(2
), p. 23005
.10.1103/PhysRevE.87.02300518.
Kumar
,
A.
,
Datta
,
S.
, and
Kalyanasundaram
,
D.
, 2016
, “
Permeability and Effective Slip in Confined Flows Transverse to Wall Slippage Patterns
,” Phys. Fluids
,
28
(8
), p. 082002
.10.1063/1.495918419.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
, 2006
, “
Drag Reduction on Patterned Superhydrophobic Surfaces
,” Phys. Rev. Lett.
,
97
(4
), p. 044504
.10.1103/PhysRevLett.97.04450420.
Ligrani
,
P.
,
Blanchard
,
D.
, and
Gale
,
B.
, 2010
, “
Slip Due to Surface Roughness for Newtonian Fluid in a Viscous Microscale Disk Pump
,” Phys. Fluids
,
22
(5
), p. 052002
.10.1063/1.341908121.
Sherman
,
F. S.
, 1990
, Viscous Flow
,
McGraw-Hill
,
New York
.Copyright © 2022 by ASME
You do not currently have access to this content.