Abstract

We have investigated the dynamics of a simple and a compound droplet separately passing through a two-dimensional Poiseuille channel flow by using the volume-of-fluids method under low Reynolds numbers (Re=1). A simple droplet while passing through the channel shows an elongation in shape in the streamwise direction and compression in the transverse direction. A round symmetric droplet evolves into a pear-like shape with time, if it is released at an off-centre to the channel mid-line. If a compound droplet (which consists of a thin shell separating an inner fluid zone from an outer fluid zone) is released in the channel either at the mid-line or with an offset, we observed the round shape evolves into a slipper-like shape. The inner droplet breaks away from the outer one within a short period. A detailed study of droplet deformation and its breakup has been carried out for different fluid properties and the compound droplet size ratios, and we found the lateral migration is high for the compound droplets when compared to the simple droplets. We also observed that the break time of the compound droplet decreases with the increase in the offset release location exponentially.

References

1.
Oba
,
N.
,
Sugimura
,
H.
,
Umehara
,
Y.
,
Yoshida
,
M.
,
Kimura
,
T.
, and
Yamaguchi
,
T.
,
1992
, “
Evaluation of an Oleic Acid Water-in-Oil-in-Water-Type Multiple Emulsion as Potential Drug Carrier Via the Enteral Route
,”
Lipids
,
27
(
9
), pp.
701
705
.10.1007/BF02536028
2.
Nisisako
,
T.
,
Okushima
,
S.
, and
Torii
,
T.
,
2005
, “
Controlled Formulation of Monodisperse Double Emulsions in a Multiple-Phase Microfluidic System
,”
Soft Matter
,
1
(
1
), pp.
23
27
.10.1039/b501972a
3.
Huang
,
S.-H.
,
Tan
,
W.-H.
,
Tseng
,
F.-G.
, and
Takeuchi
,
S.
,
2006
, “
A Monolithically Three-Dimensional Flow-Focusing Device for Formation of Single/Double Emulsions in Closed/Open Microfluidic Systems
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2336
2344
.10.1088/0960-1317/16/11/013
4.
Frohn
,
A.
, and
Roth
,
N.
,
2000
,
Dynamics of Droplets
,
2000th ed., Springer, Berlin.
5.
Shum
,
H. C.
,
Zhao
,
Y-J.
,
Kim
,
S.-H.
, and
Weitz
,
D. A.
,
2011
, “
Multicompartment Polymersomes From Double Emulsions
,”
Angew. Chem. Int. Ed.
,
50
(
7
), pp.
1648
1651
.10.1002/anie.201006023
6.
Lee
,
D.
, and
Weitz
,
D. A.
,
2008
, “
Double Emulsion-Templated Nanoparticle Colloidosomes With Selective Permeability
,”
Adv. Mater.
,
20
(
18
), pp.
3498
3503
.10.1002/adma.200800918
7.
Blanco-Prı́eto
,
M. J.
,
Fattal
,
E.
,
Gulik
,
A.
,
Dedieu
,
J. C.
,
Roques
,
B. P.
, and
Couvreur
,
P.
,
1997
, “
Characterization and Morphological Analysis of a Cholecystokinin Derivative Peptide-Loaded Poly (Lactide-co-Glycolide) Microspheres Prepared by a Water-in-Oil-in-Water Emulsion Solvent Evaporation Method
,”
J. Controlled Release
,
43
(
1
), pp.
81
87
.10.1016/S0168-3659(96)01474-5
8.
Okochi
,
H.
, and
Nakano
,
M.
,
2000
, “
Preparation and Evaluation of w/o/w Type Emulsions Containing Vancomycin
,”
Adv. Drug Deliv. Rev.
,
45
(
1
), pp.
5
26
.10.1016/S0169-409X(00)00097-1
9.
Utada
,
A.
,
Lorenceau
,
E.
,
Link
,
D.
,
Kaplan
,
P.
,
Stone
,
H. A.
, and
Weitz
,
D.
,
2005
, “
Monodisperse Double Emulsions Generated From a Microcapillary Device
,”
Science
,
308
(
5721
), pp.
537
541
.10.1126/science.1109164
10.
Zhang
,
Y.
,
Chan
,
H. F.
, and
Leong
,
K. W.
,
2013
, “
Advanced Materials and Processing for Drug Delivery: The Past and the Future
,”
Adv. Drug Deliv. Rev.
,
65
(
1
), pp.
104
120
.10.1016/j.addr.2012.10.003
11.
Shah
,
R. K.
,
Shum
,
H. C.
,
Rowat
,
A. C.
,
Lee
,
D.
,
Agresti
,
J. J.
,
Utada
,
A. S.
,
Chu
,
L.-Y.
,
Kim
,
J.-W.
,
Fernandez-Nieves
,
A.
,
Martinez
,
C. J.
, and
Weitz
,
D. A.
,
2008
, “
Designer Emulsions Using Microfluidics
,”
Mater. Today
,
11
(
4
), pp.
18
27
.10.1016/S1369-7021(08)70053-1
12.
Vladisavljević
,
G.
,
Kobayashi
,
I.
, and
Nakajima
,
M.
,
2012
, “
Production of Uniform Droplets Using Membrane, Microchannel and Microfluidic Emulsification Devices
,”
Microfluid. Nanofluid.
,
13
(
1
), pp.
151
178
.10.1007/s10404-012-0948-0
13.
Okushima
,
S.
,
Nisisako
,
T.
,
Torii
,
T.
, and
Higuchi
,
T.
,
2004
, “
Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices
,”
Langmuir
,
20
(
23
), pp.
9905
9908
.10.1021/la0480336
14.
Seo
,
M.
,
Paquet
,
C.
,
Nie
,
Z.
,
Xu
,
S.
, and
Kumacheva
,
E.
,
2007
, “
Microfluidic Consecutive Flow-Focusing Droplet Generators
,”
Soft Matter
,
3
(
8
), pp.
986
992
.10.1039/b700687j
15.
Borthakur
,
M. P.
,
Biswas
,
G.
, and
Bandyopadhyay
,
D.
,
2018
, “
Dynamics of Deformation and Pinch-Off of a Migrating Compound Droplet in a Tube
,”
Phys. Rev. E
,
97
(
4
), p.
043112
.10.1103/PhysRevE.97.043112
16.
Santra
,
S.
,
Das
,
S.
, and
Chakraborty
,
S.
,
2019
, “
Electric Field-Induced Pinch-Off of a Compound Droplet in Poiseuille Flow
,”
Phys. Fluids
,
31
(
6
), p.
062004
.10.1063/1.5094948
17.
Che
,
Z.
,
Yap
,
Y. F.
, and
Wang
,
T.
,
2018
, “
Flow Structure of Compound Droplets Moving in Microchannels
,”
Phys. Fluids
,
30
(
1
), p.
012114
.10.1063/1.5008908
18.
Thammanna Gurumurthy
,
V.
, and
Pushpavanam
,
S.
,
2020
, “
Hydrodynamics of a Compound Drop in Plane Poiseuille Flow
,”
Phys. Fluids
,
32
(
7
), p.
072003
.10.1063/5.0009401
19.
Guido
,
S.
, and
Preziosi
,
V.
,
2010
, “
Droplet Deformation Under Confined Poiseuille Flow
,”
Adv. Colloid Interface Sci.
,
161
(
1–2
), pp.
89
101
.10.1016/j.cis.2010.04.005
20.
Nourbakhsh, and Mortazavi
,
2010
, “
A Three Dimensional Study of the Motion of a Drop in Plane Poiseuille Flow at Finite Reynolds Numbers
,”
Iran. J. Sci. Technol.
,
34
(
2
), pp.
179
196
.10.22099/IJSTM.2010.910
21.
Chan
,
P.
, and
Leal
,
L.
,
1979
, “
The Motion of a Deformable Drop in a Second-Order Fluid
,”
J. Fluid Mech.
,
92
(
1
), pp.
131
170
.10.1017/S0022112079000562
22.
Mortazavi
,
S.
, and
Tryggvason
,
G.
,
2000
, “
A Numerical Study of the Motion of Drops in Poiseuille Flow. Part 1. Lateral Migration of One Drop
,”
J. Fluid Mech.
,
411
, pp.
325
350
.10.1017/S0022112099008204
23.
Lan
,
H.
, and
Khismatullin
,
D. B.
,
2012
, “
A Numerical Study of the Lateral Migration and Deformation of Drops and Leukocytes in a Rectangular Microchannel
,”
Int. J. Multiphase Flow
,
47
, pp.
73
84
.10.1016/j.ijmultiphaseflow.2012.07.004
24.
Nath
,
B.
,
Biswas
,
G.
,
Dalal
,
A.
, and
Sahu
,
K. C.
,
2017
, “
Migration of a Droplet in a Cylindrical Tube in the Creeping Flow Regime
,”
Phys. Rev. E
,
95
(
3
), p.
033110
.10.1103/PhysRevE.95.033110
25.
Lee
,
H.
, and
Balachandar
,
S.
,
2010
, “
Drag and Lift Forces on a Spherical Particle Moving on a Wall in a Shear Flow at Finite Re
,”
J. Fluid Mech.
,
657
, pp.
89
125
.10.1017/S0022112010001382
26.
Zeng
,
L.
,
Balachandar
,
S.
, and
Fischer
,
P.
,
2005
, “
Wall-Induced Forces on a Rigid Sphere at Finite Reynolds Number
,”
J. Fluid Mech.
,
536
, pp.
1
25
.10.1017/S0022112005004738
27.
Erb
,
R. M.
,
Obrist
,
D.
,
Chen
,
P. W.
,
Studer
,
J.
, and
Studart
,
A. R.
,
2011
, “
Predicting Sizes of Droplets Made by Microfluidic Flow-Induced Dripping
,”
Soft Matter
,
7
(
19
), pp.
8757
8761
.10.1039/c1sm06231j
28.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
29.
Klostermann
,
J.
,
Schaake
,
K.
, and
Schwarze
,
R.
,
2013
, “
Numerical Simulation of a Single Rising Bubble by Vof With Surface Compression
,”
Int. J. Numer. Methods Fluids
,
71
(
8
), pp.
960
982
.10.1002/fld.3692
30.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
31.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver Interfoam
,”
Comput. Sci. Discovery
,
5
(
1
), p.
014016
.10.1088/1749-4699/5/1/014016
32.
Senapati
,
A.
,
Singh
,
G.
, and
Lakkaraju
,
R.
,
2019
, “
Numerical Simulations of an Inline Rising Unequal-Sized Bubble Pair in a Liquid Column
,”
Chem. Eng. Sci.
,
208
, p.
115159
.10.1016/j.ces.2019.115159
33.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
34.
Damián
,
S. M.
,
2012
, “
Description and Utilization of Interfoam Multiphase Solver
,” Technical Report, International Center for Computational Methods in Engineering, accessed Nov. 5, 2019, http://infofich.unl.edu.ar/upload/3be0e16065026527477b4b948c4caa7523c8ea52.pdf
35.
Larsen
,
B. E.
,
Fuhrman
,
D. R.
, and
Roenby
,
J.
,
2019
, “
Performance of Interfoam on the Simulation of Progressive Waves
,”
Coastal Eng. J.
,
61
(
3
), pp.
380
400
.10.1080/21664250.2019.1609713
36.
Morgan
,
G. C.
,
2013
, “
Application of the Interfoam Vof Code to Coastal Wave/Structure Interaction
,” Ph.D. thesis,
University of Bath
, Bath, UK.
37.
Eymard
,
R.
,
Gallouët
,
T.
, and
Herbin
,
R.
,
2000
,
Finite Volume Methods. J. L. Lions, Philippe Ciarlet. Solution of Equation in ffn (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis
, Vol.
7
, Elsevier, Amsterdam, The Netherlands, pp.
713
1018
.
38.
Butcher
,
J. C.
,
2016
,
Numerical Methods for Ordinary Differential Equations
,
John Wiley & Sons, Ltd, United Kingdom.
39.
Jasak
,
H.
,
2015
, “
Finite Volume Discretisation in Openfoam-Best Practice Guidelines
,”
Predavanja, CFD With OpenSource Software Course
,
Chalmers University
, Sweden.
40.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations
,”
J. Comput. Phys.
,
160
(
1
), pp.
241
282
.10.1006/jcph.2000.6459
41.
Griffiths
,
G.
, and
Schiesser
,
W. E.
,
2010
,
Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods With MATLAB and Maple
,
Academic Press
, Cambridge, MA.
42.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
43.
Nadim
,
A.
, and
Stone
,
H. A.
,
1991
, “
The Motion of Small Particles and Droplets in Quadratic Flows
,”
Stud. Appl. Math.
,
85
(
1
), pp.
53
73
.10.1002/sapm199185153
44.
Griggs
,
A. J.
,
Zinchenko
,
A. Z.
, and
Davis
,
R. H.
,
2007
, “
Low-Reynolds-Number Motion of a Deformable Drop Between Two Parallel Plane Walls
,”
Int. J. Multiphase Flow
,
33
(
2
), pp.
182
206
.10.1016/j.ijmultiphaseflow.2006.06.012
45.
Hua
,
H.
,
Shin
,
J.
, and
Kim
,
J.
,
2014
, “
Dynamics of a Compound Droplet in Shear Flow
,”
Int. J. Heat Fluid Flow
,
50
, pp.
63
71
.10.1016/j.ijheatfluidflow.2014.05.007
46.
Chen
,
Y.
,
Liu
,
X.
,
Zhang
,
C.
, and
Zhao
,
Y.
,
2015
, “
Enhancing and Suppressing Effects of an Inner Droplet on Deformation of a Double Emulsion Droplet Under Shear
,”
Lab Chip
,
15
(
5
), pp.
1255
1261
.10.1039/C4LC01231C
47.
Zhou
,
C.
,
Yue
,
P.
, and
Feng
,
J. J.
,
2008
, “
Deformation of a Compound Drop Through a Contraction in a Pressure-Driven Pipe Flow
,”
Int. J. Multiphase Flow
,
34
(
1
), pp.
102
109
.10.1016/j.ijmultiphaseflow.2007.09.002
48.
Martinez
,
M.
, and
Udell
,
K.
,
1990
, “
Axisymmetric Creeping Motion of Drops Through Circular Tubes
,”
J. Fluid Mech.
,
210
, pp.
565
591
.10.1017/S0022112090001409
49.
Olbricht
,
W.
, and
Kung
,
D.
,
1992
, “
The Deformation and Breakup of Liquid Drops in Low Reynolds Number Flow Through a Capillary
,”
Phys. Fluids A Fluid Dyn.
,
4
(
7
), pp.
1347
1354
.10.1063/1.858412
50.
Tao
,
J.
,
Song
,
X.
,
Liu
,
J.
, and
Wang
,
J.
,
2013
, “
Microfluidic Rheology of the Multiple-Emulsion Globule Transiting in a Contraction Tube Through a Boundary Element Method
,”
Chem. Eng. Sci.
,
97
, pp.
328
336
.10.1016/j.ces.2013.04.043
51.
Hetsroni
,
G.
, and
Haber
,
S.
,
1970
, “
The Flow in and Around a Droplet or Bubble Submerged in an Unbound Arbitrary Velocity Field
,”
Rheol. Acta
,
9
(
4
), pp.
488
496
.10.1007/BF01985457
52.
Grace
,
H. P.
,
1982
, “
Dispersion Phenomena in High Viscosity Immiscible Fluid Systems and Application of Static Mixers as Dispersion Devices in Such Systems
,”
Chem. Eng. Commun.
,
14
(
3–6
), pp.
225
277
.10.1080/00986448208911047
53.
Montanero
,
J. M.
, and
Ganán-Calvo
,
A. M.
,
2020
, “
Dripping, Jetting and Tip Streaming
,”
Rep. Prog. Phys.
, 83, p.
097001
.10.1088/1361-6633/aba482
54.
Feigl
,
K.
,
Baniabedalruhman
,
A.
,
Tanner
,
F. X.
, and
Windhab
,
E. J.
,
2016
, “
Numerical Simulations of the Breakup of Emulsion Droplets Inside a Spraying Nozzle
,”
Phys. Fluids
,
28
(
12
), p.
123103
.10.1063/1.4972097
55.
Segre
,
G.
, and
Silberberg
,
A.
,
1961
, “
Radial Particle Displacements in Poiseuille Flow of Suspensions
,”
Nature
,
189
(
4760
), pp.
209
210
.10.1038/189209a0
56.
Karnis
,
A.
, and
Mason
,
S.
,
1967
, “
Particle Motions in Sheared Suspensions: Xxiii. wall Migration of Fluid Drops
,”
J. Colloid Interface Sci.
,
24
(
2
), pp.
164
169
.10.1016/0021-9797(67)90214-7
57.
Hiller
,
W.
, and
Kowalewski
,
T.
,
1986
, “
An Experimental Study of the Lateral Migration of a Droplet in a Creeping Flow
,”
Exp. Fluids
,
5
(
1
), pp.
43
48
.10.1007/BF00272424
58.
Coulliette
,
C.
, and
Pozrikidis
,
C.
,
1998
, “
Motion of an Array of Drops Through a Cylindrical Tube
,”
J. Fluid Mech.
,
358
, pp.
1
28
.10.1017/S0022112097007957
59.
Chen
,
X.
,
Xue
,
C.
,
Zhang
,
L.
,
Hu
,
G.
,
Jiang
,
X.
, and
Sun
,
J.
,
2014
, “
Inertial Migration of Deformable Droplets in a Microchannel
,”
Phys. Fluids
,
26
(
11
), p.
112003
.10.1063/1.4901884
60.
Magnaudet
,
J.
,
Takagi
,
S.
, and
Legendre
,
D.
,
2003
, “
Drag, Deformation and Lateral Migration of a Buoyant Drop Moving Near a wall
,”
J. Fluid Mech.
,
476
, pp.
115
157
.10.1017/S0022112002002902
61.
Kaoui
,
B.
,
Ristow
,
G.
,
Cantat
,
I.
,
Misbah
,
C.
, and
Zimmermann
,
W.
,
2008
, “
Lateral Migration of a Two-Dimensional Vesicle in Unbounded Poiseuille Flow
,”
Phys. Rev. E
,
77
(
2
), p.
021903
.10.1103/PhysRevE.77.021903
62.
Coupier
,
G.
,
Kaoui
,
B.
,
Podgorski
,
T.
, and
Misbah
,
C.
,
2008
, “
Noninertial Lateral Migration of Vesicles in Bounded Poiseuille Flow
,”
Phys. Fluids
,
20
(
11
), p.
111702
.10.1063/1.3023159
You do not currently have access to this content.