Abstract

In this paper, we investigated the heat and mass transfer analysis of an MHD convection flow of Maxwell nanofluid with Cattaneo–Christov heat flux model along with a porous stretching sheet. The effects of thermal radiation, viscous dissipation, suction/injection, and higher-order chemical reaction are taken into consideration. By using similarity transformations the governing equations of the study are reduced into a system of ordinary differential equations and solved numerically by using the BVP5C matlab package. The effects of dimensionless parameters on the present study are deliberated with the aid of graphs and tables. It is found that an increase in thermal Grashof number, thermal radiation, and thermal relaxation time parameter drops the temperature field. The heat transfer rate is declined with enhancing heat source, Brownian motion and thermophoresis parameters. Also, observed that the concentration field reduces with the rising value of chemical reaction. The numerically computed values of Nusselt number and Sherwood number are validated with existing literature and found a good agreement.

References

1.
Hayat
,
T.
,
Mustafa
,
M.
, and
Obaidat
,
S.
,
2011
, “
Soret and Dufour Effects on the Stagnation-Point Flow of a Micropolar Fluid Toward a Stretching Sheet
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021202
.10.1115/1.4003505
2.
Hayat
,
T.
,
Iqbal
,
Z.
,
Mustafa
,
M.
, and
Alsaedi
,
A.
,
2012
, “
Momentum and Heat Transfer of an Upper-Convected Maxwell Fluid Over a Moving Surface With Convective Boundary Conditions
,”
Nucl. Eng. Des.
,
252
, pp.
242
247
.10.1016/j.nucengdes.2012.07.012
3.
Subhas Abel
,
M.
,
Tawade
,
J. V.
, and
Nandeppanavar
,
M. M.
,
2012
, “
MHD Flow and Heat Transfer for the Upper-Convected Maxwell Fluid Over a Stretching Sheet
,”
Meccanica
,
47
(
2
), pp.
385
393
.10.1007/s11012-011-9448-7
4.
Jusoh
,
R.
,
Nazar
,
R.
, and
Pop
,
I.
,
2017
, “
Flow and Heat Transfer of Magnetohydrodynamic Three-Dimensional Maxwell Nanofluid Over a Permeable Stretching/Shrinking Surface With Convective Boundary Conditions
,”
Int. J. Mech. Sci.
,
124–125
, pp.
166
173
.10.1016/j.ijmecsci.2017.02.022
5.
Aliakbar
,
V.
,
Alizadeh-Pahlavan
,
A.
, and
Sadeghy
,
K.
,
2009
, “
The Influence of Thermal Radiation on MHD Flow of Maxwellian Fluids Above Stretching Sheets
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
779
794
.10.1016/j.cnsns.2007.12.003
6.
Hayat
,
T.
,
Sajjad
,
R.
,
Abbas
,
Z.
,
Sajid
,
M.
, and
Hendi
,
A. A.
,
2011
, “
Radiation Effects on MHD Flow of Maxwell Fluid in a Channel With Porous Medium
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
854
862
.10.1016/j.ijheatmasstransfer.2010.09.069
7.
Vinodkumar Reddy
,
M.
,
Lakshminarayana
,
P.
, and
Vajravelu
,
K.
,
2021
, “
A Comparative Study of MHD non-Newtonian Fluid Flows With the Effects of Chemical Reaction and Radiation Over a Stretching Sheet
,”
Comput. Therm. Sci.
,
13
(
5
), pp.
17
29
.10.1615/ComputThermalScien.2021037094
8.
Sucharitha
,
G.
,
Vajravelu
,
K.
, and
Lakshminarayana
,
P.
,
2019
, “
Effect of Heat and Mass Transfer on the Peristaltic Flow of a Jeffrey Nanofluid in a Tapered Flexible Channel in the Presence of Aligned Magnetic Field
,”
Eur. Phys. J. Spec. Top.
,
228
(
12
), pp.
2713
2728
.10.1140/epjst/e2019-900067-2
9.
Nadeem
,
S.
,
Khan
,
M. N.
,
Muhammad
,
N.
, and
Ahmad
,
S.
,
2019
, “
Mathematical Analysis of Bio-Convective Micropolar Nanofluid
,”
J. Comput. Des. Eng.
,
6
(
3
), pp.
233
242
.https://doi.org/10.1016/j.jcde.2019.04.001
10.
Jabeen
,
K.
,
Mushtaq
,
M.
, and
Akram Muntazir
,
R. M.
,
2022
, “
Suction and Injection Impacts on Casson Nanofluid With Gyrotactic Micro‐Organisms Over a Moving Wedge
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011204
.10.1115/1.4051484
11.
Jalil
,
M.
, and
Asghar
,
S.
,
2013
, “
Flow and Heat Transfer of Powell-Eyring Fluid Over a Stretching Surface: A Lie Group Analysis
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121201
.10.1115/1.4025097
12.
Mahdy
,
A.
,
Chamkha
,
A. J.
, and
Nabwey
,
H. A.
,
2020
, “
Entropy Analysis and Unsteady MHD Mixed Convection Stagnation-Point Flow of Casson Nanofluid Around a Rotating Sphere
,”
Alexandria Eng. J.
,
59
(
3
), pp.
1693
1703
.10.1016/j.aej.2020.04.028
13.
Hussain
,
T.
,
Hussain
,
S.
, and
Hayat
,
T.
,
2016
, “
Impact of Double Stratification and Magnetic Field in Mixed Convective Radiative Flow of Maxwell Nanofluid
,”
J. Mol. Liq.
,
220
, pp.
870
878
.10.1016/j.molliq.2016.05.012
14.
Daniel
,
Y. S.
, and
Daniel
,
S. K.
,
2015
, “
Effects of Buoyancy and Thermal Radiation on MHD Flow Over a Stretching Porous Sheet Using Homotopy Analysis Method
,”
Alexandria Eng. J.
,
54
(
3
), pp.
705
712
.10.1016/j.aej.2015.03.029
15.
Ibrahim
,
S. M.
,
Lorenzini
,
G.
,
Vijaya Kumar
,
P.
, and
Raju
,
C. S. K.
,
2017
, “
Influence of Chemical Reaction and Heat Source on Dissipative MHD Mixed Convection Flow of a Casson Nanofluid Over a Nonlinear Permeable Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
111
, pp.
346
355
.10.1016/j.ijheatmasstransfer.2017.03.097
16.
Mishra
,
S. R.
,
Khan
,
I.
,
Al-Mdallal
,
Q. M.
, and
Asifa
,
T.
,
2018
, “
Free Convective Micropolar Fluid Flow and Heat Transfer Over a Shrinking Sheet With Heat Source
,”
Case Stud. Therm. Eng.
,
11
, pp.
113
119
.10.1016/j.csite.2018.01.005
17.
Vinodkumar Reddy
,
M.
,
Lakshminarayana
,
P.
, and
Vajravelu
,
K.
,
2020
, “
MHD Radiative Flow of a Maxwell Fluid on an Expanding Surface With the Effects of Dufour and Soret and Chemical Reaction
,”
Comput. Therm. Sci.
,
12
(
4
), pp.
317
327
.10.1615/ComputThermalScien.2020034147
18.
Shankar Goud
,
B.
,
2020
, “
Heat Generation/Absorption Influence on Steady Stretched Permeable Surface on MHD Flow of a Micropolar Fluid Through a Porous Medium in the Presence of Variable Suction/Injection
,”
Int. J. Thermofluids
,
7–8
, p.
100044
.10.1016/j.ijft.2020.100044
19.
Mittal
,
A. S.
, and
Patel
,
H. R.
,
2020
, “
Influence of Thermophoresis and Brownian Motion on Mixed Convection Two Dimensional MHD Casson Fluid Flow With Non-Linear Radiation and Heat Generation
,”
Phys. A
,
537
, p.
122710
.10.1016/j.physa.2019.122710
20.
Meenakumari
,
R.
, and
Lakshminarayana
,
P.
,
2020
, “
Radiation and Hall Effects on a 3D Flow of MHD Williamson Fluid Over a Stretchable Surface
,”
Heat Transfer
,
49
(
8
), pp.
4410
4426
.https://doi.org/10.1002/htj.21833
21.
Pal
,
D.
,
Debranjan
,
C.
, and
Vajravelu
,
K.
,
2020
, “
Influence of Magneto-Thermo Radiation on Heat Transfer of a Thin Nanofluid Film With Nonuniform Heat Source/Sink
,”
Propul. Power Res.
,
9
(
2
), pp.
169
180
.10.1016/j.jppr.2020.03.003
22.
Vinodkumar Reddy
,
M.
, and
Lakshminarayana
,
P.
,
2021
, “
Cross-Diffusion and Heat Source Effects on a Three-Dimensional MHD Flow of Maxwell Nanofluid Over a Stretching Surface With Chemical Reaction
,”
Eur. Phys. J. Spec. Top.
,
230
(
5
), pp.
1371
1379
.10.1140/epjs/s11734-021-00037-9
23.
Siddiqa
,
S.
,
Hossain
,
M. A.
, and
Saha
,
S. C.
,
2013
, “
Natural Convection Flow in a Strong Cross Magnetic Field With Radiation
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051202
.10.1115/1.4023854
24.
Rashidi
,
M. M.
,
Vishnu Ganesh
,
N.
,
Abdul Hakeem
,
A. K.
, and
Ganga
,
B.
,
2014
, “
Buoyancy Effect on MHD Flow of Nanofluid Over a Stretching Sheet in the Presence of Thermal Radiation
,”
J. Mol. Liq.
,
198
, pp.
234
238
.10.1016/j.molliq.2014.06.037
25.
Raju
,
C. S. K.
,
Sandeep
,
N.
,
Sulochana
,
C.
,
Sugunamma
,
V.
, and
Jayachandra Babu
,
M.
,
2015
, “
Radiation, Inclined Magnetic Field and Cross-Diffusion Effects on Flow Over a Stretching Surface
,”
J. Nigerian Math. Soc.
,
34
(
2
), pp.
169
180
.10.1016/j.jnnms.2015.02.003
26.
Mukhopadhyay
,
S.
,
2013
, “
Slip Effects on MHD Boundary Layer Flow Over an Exponentially Stretching Sheet With Suction/Blowing and Thermal Radiation
,”
Ain Shams Eng. J.
,
4
(
3
), pp.
485
491
.10.1016/j.asej.2012.10.007
27.
Hayat
,
T.
, and
Qasim
,
M.
,
2010
, “
Influence of Thermal Radiation and Joule Heating on MHD Flow of a Maxwell Fluid in the Presence of Thermophoresis
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4780
4788
.10.1016/j.ijheatmasstransfer.2010.06.014
28.
Layek
,
G. C.
,
Mukhopadhyay
,
S.
, and
Samad
,
S. K. A.
,
2007
, “
Heat and Mass Transfer Analysis for Boundary Layer Stagnation-Point Flow Towards a Heated Porous Stretching Sheet With Heat Absorption/Generation and Suction/Blowing
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
347
356
.10.1016/j.icheatmasstransfer.2006.11.011
29.
Toki
,
C. J.
,
2014
, “
An Analytical Solution for Boundary Layer Flows Over a Moving-Flat Porous Plate With Viscous Dissipation
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
024501
.10.1115/1.4025142
30.
Shalini
,
J.
, and
Rakesh
,
C.
,
2015
, “
Effects of MHD on Boundary Layer Flow in Porous Medium Due to Exponentially Shrinking Sheet With Slip
,”
Procedia Eng.
,
127
, pp.
1203
1210
.http://dx.doi.org/10.1016/j.proeng.2015.11.464
31.
Attia
,
H. A.
,
Ewis
,
K. M.
, and
Abdeen
,
M. A. M.
,
2012
, “
Stagnation Point Flow Through a Porous Medium Towards a Radially Stretching Sheet in the Presence of Uniform Suction or Injection and Heat Generation
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081202
.10.1115/1.4006246
32.
Gopal
,
D.
,
Saleem
,
S.
,
Jagadha
,
S.
,
Ahmad
,
F.
,
Othman Almatroud
,
A.
, and
Kishan
,
N.
,
2021
, “
Numerical Analysis of Higher Order Chemical Reaction on Electrically MHD Nanofluid Under Influence of Viscous Dissipation
,”
Alexandria Eng. J.
,
60
(
1
), pp.
1861
1871
.10.1016/j.aej.2020.11.034
33.
Vajravelu
,
K.
,
Prasad
,
K. V.
, and
Datti
,
P. S.
,
2013
, “
Hydromagnetic Fluid Flow and Heat Transfer at a Stretching Sheet With Fluid-Particle Suspension and Variable Fluid Properties
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011101
.10.1115/1.4007802
34.
Sandeep
,
N.
, and
Sulochana
,
C.
,
2016
, “
MHD Flow Over a Permeable Stretching/Shrinking Sheet of a Nanofluid With Suction/Injection
,”
Alexandria Eng. J.
,
55
(
2
), pp.
819
827
.https://doi.org/10.1016/j.aej.2016.02.001
35.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
,
2015
, “
MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study
,”
J. Magn. Magn. Mater.
,
374
, pp.
569
576
.10.1016/j.jmmm.2014.09.013
36.
Vinodkumar Reddy
,
M.
, and
Lakshminarayana
,
P.
,
2021
, “
Influence of Thermal Radiation and Viscous Dissipation on MHD Flow of UCM Fluid Over a Porous Stretching Sheet With Higher Order Chemical Reaction. Special Topics, & Reviews in Porous Media
,”
An Int. J.
,
12
(
4
), pp.
33
49
.10.1615/SpecialTopicsRevPorousMedia.2020033950
37.
Nadeem
,
S.
,
Akhtar
,
S.
, and
Abbas
,
N.
,
2020
, “
Heat Transfer of Maxwell Base Fluid Flow of Nanomaterial With MHD Over a Vertical Moving Surface
,”
Alexandria Eng. J.
,
59
(
3
), pp.
1847
1856
.10.1016/j.aej.2020.05.008
38.
Patel
,
H. R.
, and
Rajiv
,
S.
,
2019
, “
Thermophoresis, Brownian Motion and Non-Linear Thermal Radiation Effects on Mixed Convection MHD Micropolar Fluid Flow Due to Nonlinear Stretched Sheet in Porous Medium With Viscous Dissipation, Joule Heating and Convective Boundary Condition
,”
Int. Commun. Heat Mass Transfer
,
107
, pp.
68
92
.10.1016/j.icheatmasstransfer.2019.05.007
39.
Abbasi
,
F. M.
, and
Shehzad
,
S. A.
,
2016
, “
Heat Transfer Analysis for Three-Dimensional Flow of Maxwell Fluid With Temperature Dependent Thermal Conductivity: Application of Cattaneo-Christov Heat Flux Model
,”
J. Mol. Liq.
,
220
, pp.
848
854
.10.1016/j.molliq.2016.04.132
40.
Mahmood
,
A.
,
Jamshed
,
W.
, and
Aziz
,
A.
,
2018
, “
Entropy and Heat Transfer Analysis Using Cattaneo-Christov Heat Flux Model for a Boundary Layer Flow of Casson Nanofluid
,”
Results Phys.
,
10
, pp.
640
649
.10.1016/j.rinp.2018.07.005
41.
Hayat
,
T.
,
Imtiaz
,
M.
,
Alsaedi
,
A.
, and
Almezal
,
S.
,
2016
, “
On Cattaneo-Christov Heat Flux in MHD Flow of Oldroyd-B Fluid With Homogeneous-Heterogeneous Reactions
,”
J. Magn. Magn. Mater.
,
401
, pp.
296
303
.10.1016/j.jmmm.2015.10.039
42.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
, and
Raju
,
C. S. K.
,
2017
, “
Cattaneo-Christov Heat Flux on UCM Nanofluid Flow Across a Melting Surface With Double Stratification and Exponential Space Dependent Internal Heat Source
,”
Inf. Med. Unlocked
,
9
, pp.
26
34
.10.1016/j.imu.2017.05.008
43.
Malik
,
M. Y.
,
Khan
,
M.
,
Salahuddin
,
T.
, and
Khan
,
I.
,
2016
, “
Variable Viscosity and MHD Flow in Casson Fluid With Cattaneo-Christov Heat Flux Model: Using Keller Box Method
,”
Eng. Sci. Technol., Int. J.
,
19
(
4
), pp.
1985
1992
.https://doi.org/10.1016/j.jestch.2016.06.008
44.
Awais
,
M.
,
Awan
,
S. E.
,
Iqbal
,
K.
,
Khan
,
Z. A.
, and
Raja
,
M. A. Z.
,
2018
, “
Hydromagnetic Mixed Convective Flow Over a Wall With Variable Thickness and Cattaneo-Christov Heat Flux Model: OHAM Analysis
,”
Results Phys.
,
8
, pp.
621
627
.10.1016/j.rinp.2017.12.043
45.
Ibrahim
,
W.
, and
Gadisa
,
G.
,
2020
, “
Finite Element Solution of Nonlinear Convective Flow of Oldroyd-B Fluid With Cattaneo-Christov Heat Flux Model Over Nonlinear Stretching Sheet With Heat Generation or Absorption
,”
Propul. Power Res.
,
9
(
3
), pp.
304
315
.10.1016/j.jppr.2020.07.001
46.
Nazir
,
U.
,
Saleem
,
S.
,
Nawaz
,
M.
,
Sadiq
,
M. A.
, and
Alderremy
,
A. A.
,
2020
, “
Study of Transport Phenomenon in Carreau Fluid Using Cattaneo–Christov Heat Flux Model With Temperature Dependent Diffusion Coefficients
,”
Phys. A
,
554
, p.
123921
.10.1016/j.physa.2019.123921
47.
Salahuddin
,
T.
,
Malik
,
M. Y.
,
Hussain
,
A.
,
Bilal
,
S.
, and
Awais
,
M.
,
2016
, “
MHD Flow of Cattaneo-Christov Heat Flux Model for Williamson Fluid Over a Stretching Sheet With Variable Thickness: Using Numerical Approach
,”
J. Magn. Magn. Mater.
,
401
, pp.
991
997
.10.1016/j.jmmm.2015.11.022
48.
Nadeem
,
S.
,
Ahmad
,
S.
,
Muhammad
,
N.
, and
Mustafa
,
M. T.
,
2017
, “
Chemically Reactive Species in the Flow of a Maxwell Fluid
,”
Results Phys.
,
7
, pp.
2607
2613
.10.1016/j.rinp.2017.06.017
49.
Nadeem
,
S.
,
Ahmad
,
S.
, and
Muhammad
,
N.
,
2017
, “
Cattaneo-Christov Flux in the Flow of a Viscoelastic Fluid in the Presence of Newtonian Heating
,”
J. Mol. Liq.
,
237
, pp.
180
184
.10.1016/j.molliq.2017.04.080
50.
Saleem
,
S.
,
Awais
,
M.
,
Nadeem
,
S.
,
Sandeep
,
N.
, and
Mustafa
,
T.
,
2017
, “
Theoretical Analysis of Upper-Convected Maxwell Fluid Flow With Cattaneo-Christov Heat Flux Model
,”
Chin. J. Phys.
,
55
(
4
), pp.
1615
1625
.10.1016/j.cjph.2017.04.005
51.
Ramandevi
,
B.
,
Ramana Reddy
,
J. V.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2018
, “
Combined Influence of Viscous Dissipation and Nonuniform Heat Source/Sink on MHD non-Newtonian Fluid Flow With Cattaneo-Christov Heat Flux
,”
Alexandria Eng. J.
,
57
(
2
), pp.
1009
1018
.10.1016/j.aej.2017.01.026
52.
Ahmad
,
S.
, and
Nadeem
,
S.
,
2020
, “
Flow Analysis by Cattaneo-Christov Heat Flux in the Presence of Thomson and Troian Slip Condition
,”
Appl. Nanosci.
,
10
(
12
), pp.
4673
4687
.10.1007/s13204-020-01267-4
53.
Khan
,
U.
,
Ahmad
,
S.
,
Hayyat
,
A.
,
Khan
,
I.
,
Nisar
,
K. S.
, and
Baleanu
,
D.
,
2020
, “
On the Cattaneo-Christov Heat Flux Model and OHAM Analysis for Three Different Types of Nanofluids
,”
Appl. Sci.
,
10
(
3
), p.
886
.10.3390/app10030886
54.
Ahmad
,
S.
, and
Nadeem
,
S.
,
2020
, “
Cattaneo-Christov-Based Study of SWCNT-MWCNT/EG Casson Hybrid Nanofluid Flow Past a Lubricated Surface With Entropy Generation
,”
Appl. Nanosci.
,
10
(
12
), pp.
5449
5458
.10.1007/s13204-020-01367-1
55.
Ahmad
,
S.
,
Nadeem
,
S.
,
Muhammad
,
N.
, and
Khan
,
M. N.
,
2021
, “
Cattaneo-Christov Heat Flux Model for Stagnation Point Flow of Micropolar Nanofluid Toward a Nonlinear Stretching Surface With Slip Effects
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
1187
1199
.10.1007/s10973-020-09504-2
56.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2017
, “
Cattaneo–Christov Intensity of Magnetised Upper-Convected Maxwell Nanofluid Flow Over an Inclined Stretching Sheet: A Generalised Fourier and Fick's Perspective
,”
Int. J. Mech. Sci.
,
130
, pp.
167
173
.10.1016/j.ijmecsci.2017.05.043
57.
Shah
,
Z.
,
Dawar
,
A.
,
Khan
,
I.
,
Islam
,
S.
,
Ching
,
D. L. C.
, and
Khan
,
A. Z.
,
2019
, “
Cattaneo-Christov Model for Electrical Magnetite Micropoler Casson Ferrofluid Over a Stretching/Shrinking Sheet Using Effective Thermal Conductivity Model
,”
Case Stud. Therm. Eng.
,
13
, p.
100352
.10.1016/j.csite.2018.11.003
You do not currently have access to this content.