Abstract

In this paper, the risk of cavitation erosion is assessed in a commercial water-jet pump using a recently developed numerical erosion assessment method by Arabnejad et al. (2021, “Numerical Assessment of Cavitation Erosion Risk Using Incompressible Simulation of Cavitating Flows,” Wear, 464–465, p. 203529). This assessment is performed for two flow conditions with different cavitation erosion risk according to the experimental paint tests and the high erosion risk areas identified by the method are compared with the experimental results. This comparison shows that the applied method is capable of both identifying the regions of high erosion risk and also capturing the difference between the cavitation erosion risk in the two studied conditions. The latter capability of the numerical assessment method, which has not been reported in the literature for other published methods, is one step forward toward the application of the method in the design process of hydraulic machines. Furthermore, the numerical results are analyzed to explain the reasons for different erosion risk in the two conditions. This analysis reveals that this difference is mostly related to the stronger flow nonuniformities entering the rotor in the most erosive condition. Using the numerical results, one reason behind these stronger nonuniformities is identified to be the stronger bursting of vortices shed from the shaft in the most erosive condition.

References

1.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Vagnoni
,
E.
,
Miorini
,
R.
, and
Katz
,
J.
,
2015
, “
Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111301
.10.1115/1.4030614
2.
Laborde
,
R.
,
Chantrel
,
P.
, and
Mory
,
M.
,
1997
, “
Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
680
685
.10.1115/1.2819298
3.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
Sixth International Conference on Hydraulic Machinery and Hydrodynamics
, Timisoara, Romania, Oct. 21–22
.https://www.researchgate.net/publication/313526026_Introduction_to_cavitation_in_hydraulic_machinery
4.
Zierke
,
W.
,
Straka
,
W.
, and
Taylor
,
P.
,
1995
, “
An Experimental Investigation of the Flow Through an Axial-Flow Pump
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
485
490
.10.1115/1.2817288
5.
Foeth
,
E.
,
van Terwisga
,
T.
, and
van Doorne
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071303
.10.1115/1.2928345
6.
Tan
,
D.
,
Miorini
,
R.
,
Keller
,
J.
, and
Katz
,
J.
,
2012
, “
Flow Visualization Using Cavitation Within Blade Passage of an Axial Waterjet Pump Rotor
,”
ASME
Paper No. FEDSM2012-72108. 10.1115/FEDSM2012-72108
7.
Bensow
,
R.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.10.1115/1.4001342
8.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.10.1115/1.4001971
9.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.10.1115/1.4030914
10.
Arabnejad
,
M.
,
Amini
,
A.
,
Bensow
,
R.
, and
Farhat
,
M.
,
2019
, “
Numerical and Experimental Investigation of Shedding Mechanisms From Leading-Edge Cavitation
,”
Int. J. Multiphase Flow
,
119
, pp.
123
143
.10.1016/j.ijmultiphaseflow.2019.06.010
11.
Franc
,
J.
, and
Michel
,
J.
,
2006
,
Fundamentals of Cavitation
, Vol.
76
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
12.
Fujikawa
,
S.
, and
Akamatsu
,
T.
,
1980
, “
Effects of the Non-Equilibrium Condensation of Vapour on the Pressure Wave Produced by the Collapse of a Bubble in a Liquid
,”
J. Fluid Mech.
,
97
(
03
), pp.
481
512
.10.1017/S0022112080002662
13.
Fortes-Patella
,
R.
,
Challier
,
G.
,
Reboud
,
J.
, and
Archer
,
A.
,
2013
, “
Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011303
.10.1115/1.4023076
14.
Supponen
,
O.
,
Kobel
,
P.
,
Obreschkow
,
D.
, and
Farhat
,
M.
,
2015
, “
The Inner World of a Collapsing Bubble
,”
Phys. Fluids
,
27
(
9
), p.
091113
.10.1063/1.4931098
15.
Bark
,
G.
,
Berchiche
,
N.
, and
Grekula
,
M.
,
2004
, “
Application of Principles for Observation and Analysis of Eroding Cavitation-the Erocav Observation Handbook
,”
EROCAV Report, Dept. of Naval Architecture
,
Chalmers University of Technology
,
Göteborg, Sweden
, Report No. 25089.
16.
Van Rijsbergen
,
M.
,
Foeth
,
E.
,
Fitzsimmons
,
P.
, and
Boorsma
,
A.
,
2012
, “
High-Speed Video Observations and acoustic-Impact Measurements on a NACA0015 Foil
,”
Proceedings of the Eighth International Symposium on Cavitation
, Singapore, Aug., pp.
958
964
.
17.
Pfitsch
,
W.
,
Gowing
,
S.
,
Fry
,
D.
,
Donnelly
,
M.
, and
Jessup
,
S.
,
2009
, “
Development of Measurement Techniques for Studying Propeller Erosion Damage in Severe Wake Fields
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug.
18.
Cao
,
Y.
,
Peng
,
X.
,
Yan
,
K.
,
Xu
,
L.
, and
Shu
,
L.
,
2017
, “
A Qualitative Study on the Relationship Between Cavitation Structure and Erosion Region Around a 3d Twisted Hydrofoil by Painting Method
,”
Fifth International Symposium on Marine Propulsors, Finland
, June 12–15, pp.
1
5
.
19.
Fortes-Patella
,
R.
,
Reboud
,
J.
, and
Briancon-Marjollet
,
L.
,
2004
, “
A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion
,”
EROCAV Workshop
, Vol.
11
, Val de Reuil, France, May, pp.
283
290
.
20.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2013
, “
Study of Quantitative Numerical Prediction of Cavitation Erosion in Cavitating Flow
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011302
.10.1115/1.4023072
21.
Schenke
,
S.
,
Melissaris
,
T.
, and
van Terwisga
,
T.
,
2019
, “
On the Relevance of Kinematics for Cavitation Implosion Loads
,”
Phys. Fluids
,
31
(
5
), p.
052102
.10.1063/1.5092711
22.
Peters
,
A.
, and
el Moctar
,
O.
,
2020
, “
Numerical Assessment of Cavitation-Induced Erosion Using a Multi-Scale Euler–Lagrange Method
,”
J. Fluid Mech.
,
894
, p. A19. 10.1017/jfm.2020.273
23.
Peters
,
A.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2018
, “
Numerical Prediction of Cavitation Erosion on a Ship Propeller in Model-and Full-Scale
,”
Wear
,
408
, pp.
1
12
.10.1016/j.wear.2018.04.012
24.
Peters
,
A.
,
Sagar
,
H.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2015
, “
Numerical Modelling and Prediction of Cavitation Erosion
,”
Wear
,
338–339
, pp.
189
201
.10.1016/j.wear.2015.06.009
25.
Usta
,
O.
, and
Korkut
,
E.
,
2019
, “
Prediction of Cavitation Development and Cavitation Erosion on Hydrofoils and Propellers by Detached Eddy Simulation
,”
Ocean Eng.
,
191
, p.
106512
.10.1016/j.oceaneng.2019.106512
26.
Budich
,
B.
,
Schmidt
,
S.
, and
Adams
,
N.
,
2015
, “
Numerical Investigation of a Cavitating Model Propeller Including Compressible Shock Wave Dynamics
,”
Fourth International Symposium on Marine Propulsors
, Austin, TX, June.
27.
Arabnejad
,
M.
,
Svennberg
,
U.
, and
Bensow
,
R.
,
2021
, “
Numerical Assessment of Cavitation Erosion Risk Using Incompressible Simulation of Cavitating Flows
,”
Wear
,
464–465
, p.
203529
.10.1016/j.wear.2020.203529
28.
Schenke
,
S.
, and
van Terwisga
,
T.
,
2019
, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations
,”
Int. J. Multiphase Flow
,
111
, pp.
200
218
.10.1016/j.ijmultiphaseflow.2018.11.016
29.
Okada
,
T.
,
Iwai
,
Y.
,
Hattori
,
S.
, and
Tanimura
,
N.
,
1995
, “
Relation Between Impact Load and the Damage Produced by Cavitation Bubble Collapse
,”
Wear
,
184
(
2
), pp.
231
239
.10.1016/0043-1648(94)06581-0
30.
Asnaghi
,
A.
,
Feymark
,
A.
, and
Bensow
,
R.
,
2017
, “
Improvement of Cavitation Mass Transfer Modeling Based on Local Flow Properties
,”
Int. J. Multiphase Flow
,
93
, pp.
142
157
.10.1016/j.ijmultiphaseflow.2017.04.005
31.
Weller
,
H.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
32.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
33.
Sauer
,
J.
,
2000
, “
Instationär Kavitierende Strömungen-Ein Neues Modell, Basierend Auf Front Capturing (Vof) Und Blasendynamik
,” Ph.D. dissertation, Uni Karlsruhe, Karlsruhe, Germany.
34.
Warming
,
R.
, and
Beam
,
R. M.
,
1976
, “
Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
,
14
(
9
), pp.
1241
1249
.10.2514/3.61457
35.
Arabnejad
,
M.
,
Eslamdoost
,
A.
,
Svennberg
,
U.
, and
Bensow
,
R.
,
2020
, “
Scale Resolving Simulations of the Non-Cavitating and Cavitating Flows in an Axial Water Jet Pump
,”
33nd Symposium on Naval Hydrodynamics
, Osaka, Japan, Oct.
19
23
.
36.
Franc
,
J.
, and
Michel
,
J.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
37.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
38.
Hall
,
M.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.10.1146/annurev.fl.04.010172.001211
39.
Arabnejad
,
M.
,
Amini
,
A.
,
Farhat
,
M.
, and
Bensow
,
R.
,
2020
, “
Hydrodynamic Mechanisms of Aggressive Collapse Events in Leading Edge Cavitation
,”
J. Hydrodyn.
,
32
(
1
), pp.
6
19
.10.1007/s42241-020-0002-8
You do not currently have access to this content.