Abstract

The objective of this paper is to experimentally and numerically investigate the transient cavitation flow during the startup process of mixed flow pump with emphasis on studying the influence of blade numbers. The transient cavitation simulation was studied based on the improved SST k–ω turbulence model and the Zwart cavitation model. Firstly, in order to obtain the relationship between transient flow rate and the variation of rotational speed at startup, a theoretical analysis based on the fast transients of centrifugal pump was first applied to mixed flow pump and was verified by the current experiment study. Subsequently, the influence of blade number on the cavitation flow in the startup was studied. It is found that the transient cavitation could be classified into four stages regardless of the number of blades: no cavitation stage, the cavitation growth stage, the cavitation reduction stage and the cavitation stabilization stage. However, the blade number does have an impact on the spatial-temporal evolution of cavitation. More specifically, when the blade number increases, the initial cavitation appeared lately, the coverage area of the triangular cavitation cloud and sheet cavitation both decreased, and the increase in blade number has a better inhibitory effect on the sheet cavitation at the cavitation growth stage, and can make sheet cavitation disappear more quickly at the cavitation reduction stage.

References

1.
Guan
,
X.
,
2011
,
Modern Pumps Theory and Design
,
Aerospace Press
, Beijing, China.
2.
Lian
,
Y.
,
Tian
,
B.
, and
Wang
,
S.
,
2011
, “
Simulation and Analysis of the Launching Process of Air-Turbine Pump Launch System
,”
Acta Armamentarii
,
32
(
2
), pp.
155
162
.10.3901/JME.2011.08.191
3.
Wittekind
,
D.
, and
Schuster
,
M.
,
2016
, “
Propeller Cavitation Noise and Background Noise in the Sea
,”
Ocean Eng.
,
120
, pp.
116
121
.10.1016/j.oceaneng.2015.12.060
4.
Korkut
,
E.
, and
Atlar
,
M.
,
2012
, “
An Experimental Investigation of the Effect of Foul Release Coating Application on Performance, Noise and Cavitation Characteristics of Marine Propellers
,”
Ocean Eng.
,
41
, pp.
1
12
.10.1016/j.oceaneng.2011.12.012
5.
Rus
,
T.
,
Dular
,
M.
,
Širok
,
B.
,
Hočevar
,
M.
, and
Kern
,
I.
,
2007
, “
An Investigation of the Relationship Between Acoustic Emission, Vibration, Noise, and Cavitation Structures on a Kaplan Turbine
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1112
1122
.10.1115/1.2754313
6.
Wei
,
Y.
,
Zhu
,
L.
,
Zhang
,
W.
, and
Wang
,
Z.
,
2020
, “
Numerical and Experimental Investigations on the Flow and Noise Characteristics in a Centrifugal Fan With Step Tongue Volutes
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
234
(
15
), pp.
2979
2993
.10.1177/0954406219890920
7.
Tsukamoto
,
H.
, and
Ohashi
,
H.
,
1982
, “
Transient Characteristics of a Centrifugal Pump During Starting Period
,”
ASME J. Fluids Eng.
,
104
(
1
), pp.
6
14
.10.1115/1.3240859
8.
Tsukamoto
,
H.
,
Matsunaga
,
S.
,
Yoneda
,
H.
, and
Hata
,
S.
,
1986
, “
Transient Characteristics of a Centrifugal Pump During Stopping Period
,”
ASME J. Fluids Eng.
,
108
(
4
), pp.
392
399
.10.1115/1.3242594
9.
Tsukamoto
,
H.
,
Yoneda
,
H.
, and
Sagara
,
K.
,
1995
, “
The Response of a Centrifugal Pump to Fluctuating Rotational Speed
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
479
484
.10.1115/1.2817287
10.
Saito
,
S.
,
1982
, “
The Transient Characteristics of a Pump During Start Up
,”
JSME Int. J.
,
25
(
201
), pp.
372
379
.10.1299/jsme1958.25.372
11.
Dazin
,
A.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2007
, “
Transient Behavior of Turbomachineries: Applications to Radial Flow Pump Startups
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1436
1444
.10.1115/1.2776963
12.
Dazin
,
A.
,
Caignaert
,
G.
, and
Dauphin-Tanguy
,
G.
,
2015
, “
Model Based Analysis of the Time Scales Associated to Pump Start-Ups
,”
Nucl. Eng. Des.
,
293
, pp.
218
227
.10.1016/j.nucengdes.2015.07.045
13.
Tanaka
,
T.
, and
Tsukamoto
,
H.
,
1999
, “
Transient Behavior of a Cavitating Centrifugal Pump at Rapid Change in Operating Condition—Part 1, Transient Phenomena at Opening/Closure of Discharge Valve
,”
Nihon Kikai Gakkai Ronbunshu B Hen/Transactions Jpn. Soc. Mech. Eng. Part B
,
63
(
616
), pp.
3984
3990
.10.1115/1.2823545
14.
Tanaka
,
T.
, and
Tsukamoto
,
H.
,
1999
, “
Transient Behavior of a Cavitating Centrifugal Pump at Rapid Change in Operating Conditions—Part 2: Transient Phenomena at Pump Startup/Shutdown
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
850
856
.10.1115/1.2823546
15.
Tanaka
,
T.
, and
Tsukamoto
,
H.
,
1999
, “
Transient Behavior of a Cavitating Centrifugal Pump at Rapid Change in Operating Conditions—Part 3: Classifications of Transient Phenomena
,”
Nihon Kikai Gakkai Ronbunshu B Hen/Transactions Jpn. Soc. Mech. Eng. Part B
,
63
(
616
), pp.
3984
3990
.10.1115/1.4000845
16.
Duplaa
,
S.
,
Coutier-Delgosha
,
O.
,
Dazin
,
A.
,
Roussette
,
O.
,
Bois
,
G.
, and
Caignaert
,
G.
,
2010
, “
Experimental Study of a Cavitating Centrifugal Pump During Fast Startups
,”
ASME J. Fluids Eng.
,
132
(
2
), pp.
365
368
.
17.
Duplaa
,
S.
,
Coutier-Delgosha
,
O.
,
Dazin
,
A.
, and
Bois
,
G.
,
2013
, “
X-Ray Measurements in a Cavitating Centrifugal Pump During Fast Start-Ups
,”
ASME J. Fluids Eng.
,
135
(
4
), p. 041204.10.1115/1.4023677
18.
Wu
,
D.
,
Wu
,
P.
,
Li
,
Z.
, and
Wang
,
L.
,
2010
, “
The Transient Flow in a Centrifugal Pump During the Discharge Valve Rapid Opening Process
,”
Nucl. Eng. Des.
,
240
(
12
), pp.
4061
4068
.10.1016/j.nucengdes.2010.08.024
19.
Wu
,
D.
,
Jiao
,
L.
, and
Wang
,
L.
,
2008
, “
Experimental Study on Cavitation Performance of a Centrifugal Pump During Starting Period
,”
J. Eng. Thermophys.
,
10
, pp.
64
66
.
20.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach
,
121
(
3
), pp.
469
480
.10.1115/1.2841339
21.
Horiguchi
,
H.
,
Semenov
,
Y.
,
Nakano
,
M.
, and
Tsujimoto
,
Y.
,
2006
, “
Linear Stability Analysis of the Effects of Camber and Blade Thickness on Cavitation Instabilities in Inducers
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
430
438
.10.1115/1.2173291
22.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Vagnoni
,
E.
,
Miorini
,
R.
, and
Katz
,
J.
,
2015
, “
Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111301
.10.1115/1.4030614
23.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
).10.1115/1.4030914
24.
Zhang
,
D.
,
Shi
,
L.
,
Shi
,
W.
,
Zhao
,
R.
,
Wang
,
H.
, and
van Esch
,
B. P. M.
,
2015
, “
Numerical Analysis of Unsteady Tip Leakage Vortex Cavitation Cloud and Unstable Suction-Side-Perpendicular Cavitating Vortices in an Axial Flow Pump
,”
Int. J. Multiphase Flow
,
77
, pp.
244
259
.10.1016/j.ijmultiphaseflow.2015.09.006
25.
Miorini
,
R.
,
Wu
,
H.
,
Tan
,
D.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Structure and Turbulence Within the Tip Leakage Vortex of an Axial Waterjet Pump
,”
Asme-Jsme-Ksme Joint Fluids Engineering Conference
, Hamamatsu, Japan, July 24–29, pp.
271
281
.
26.
Wu
,
H.
,
Miorini
,
R.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
27.
Miorini
,
R.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p. 031018.10.1115/GT2010-23056
28.
Zhao
,
X.
,
Liu
,
T.
,
Huang
,
B.
, and
Wang
,
G.
,
2020
, “
Combined Experimental and Numerical Analysis of Cavitating Flow Characteristics in an Axial Flow Waterjet Pump
,”
Ocean Eng.
,
209
, p.
107450
.10.1016/j.oceaneng.2020.107450
29.
Wang
,
L.
,
Li
,
Z.
, and
Dai
,
W.
,
2008
, “
2-D Numerical Simulation on Transient Flow in Centrifugal Pump During Starting Period
,”
J. Eng. Thermophys.
,
29
(
8
), pp.
1319
1322
.10.3321/j.issn:0253-231X.2008.08.014
30.
Wu
,
D.
,
Xu
,
B.
, and
Li
,
Z.
,
2009
, “
Numerical Simulation on Internal Flow of Centrifugal Pump During Transient Operation
,”
J. Eng. Thermophys.
,
30
(
5
), pp.
1319
1322
.10.3321/j.issn:0253-231X.2009.05.016
31.
Li
,
Z.
,
Wu
,
D.
,
Wang
,
L.
, and
Huang
,
B.
,
2010
, “
Numerical Simulation of the Transient Flow in a Centrifugal Pump During Starting Period
,”
ASME J. Fluids Eng.
,
132
(
8
), p. 081102.10.1115/1.4002056
32.
Li
,
Z.
,
Wu
,
P.
,
Wu
,
D.
, and
Wang
,
L.
,
2011
, “
Experimental and Numerical Study of Transient Flow in a Centrifugal Pump During Startup
,”
J. Mech. Sci. Technol.
,
25
(
3
), pp.
749
757
.10.1007/s12206-011-0107-7
33.
Zhang
,
Y.
,
Li
,
Y.
,
Zhu
,
Z.
, and
Cui
,
B.
,
2014
, “
Computational Analysis of Centrifugal Pump Delivering Solid–Liquid Two-Phase Flow During Startup Period
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
178
–1
85
.10.3901/CJME.2014.01.178
34.
ASME,
2005
,
Test Uncertainty
,
The American Society of Mechanical Engineers
,
New York, Standard
No. PTC 19.1.
35.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
36.
Shen
,
X.
,
Zhang
,
D.
, and
Xu
,
B.
,
2020
, “
Experimental Investigation of the Transient Patterns and Pressure Evolution of Tip Leakage Vortex and Induced-Vortices Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101206
.10.1115/1.4047529
37.
Zwart
,
P.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, No. 152.
38.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
39.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,” NASA, Washington, DC, Technical Report Memorandum No. 110446.
40.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modelling of Unsteady Effects
,”
Third International Symposium on Cavitation
, Grenoble, France, No. 26.
41.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B-Fluids
,
24
(
4
), pp.
522
538
.10.1016/j.euromechflu.2004.10.004
42.
Leroux
,
J. B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(
5
), p.
052101
.10.1063/1.1865692
43.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
44.
Coutier-Delgosha
,
O.
,
Courtot
,
Y.
,
Joussellin
,
F.
, and
Reboud
,
J. L.
,
2004
, “
Numerical Simulation of the Unsteady Cavitation Behavior of an Inducer Blade Cascade
,”
AIAA J.
,
42
(
3
), pp.
560
569
.10.2514/1.9110
45.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.10.1016/j.ijmultiphaseflow.2012.02.006
46.
Li
,
Z. R.
,
2012
, “
Assessment of Cavitation Erosion with a Multiphase Reynolds-Averaged Navier–Stokes Method
,” Ph.D. thesis,
Delft University of Technology
,
Delft, The Netherlands
.
47.
Liu
,
J. T.
,
Liu
,
S. H.
,
Wu
,
Y. L.
,
Jiao
,
L.
,
Wang
,
L. Q.
, and
Sun
,
Y. K.
,
2012
, “
Numerical Investigation of the Hump Characteristic of a Pump-Turbine Based on an Improved Cavitation Model
,”
Comput. Fluids
,
68
, pp.
105
111
.10.1016/j.compfluid.2012.08.001
You do not currently have access to this content.