Abstract

The article examines the consequence of thermal buoyancy-driven cross-flow and heat transfer for shear-thinning power-law fluids on the tandem orientation of two cylinders. Finite volume methodology is used to investigate the effect of the gap ratio (2.5 ≤ S/D ≤5.5), power-law index (0.2 ≤ n ≤1), and Richardson number (0 ≤ Ri1) on flow and thermal output parameters at Reynolds number Re=100 and Prandtl number Pr=50 in a confined channel. An unprecedented jump has been witnessed in the flow/thermal parameters at the critical gap ratio (critical spacing). At forced convection (Ri=0), this critical spacing keeps on increasing with shear-thinning character, from S/D =3.9 (at n =1) to 4.9 (at n =0.2). On the contrary, an increase in shear-thinning characteristic leads to a decrease in critical spacing from S/D =3.9 (at n =1) to 2.8 (at n =0.4) for Ri=1 (mixed convection). The heat transfer rate increases with shear-thinning behavior, with a maximum heat transfer, noted at n =0.2. A higher unprecedented increment for flow/thermal parameters is seen at critical spacing for the downstream cylinder than the upstream cylinder. At the highest gap ratio, the output parameters for the upstream cylinder approximate that of an isolated cylinder. The time-variant fluctuations in lift coefficients for a shear-thinning flow in a tandem arrangement provide a new understanding of coshedding and extended body flow regimes.

References

1.
Govindarajan
,
R.
, and
Sahu
,
K. C.
,
2014
, “
Instabilities in Viscosity-Stratified Flow
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
331
353
.10.1146/annurev-fluid-010313-141351
2.
Alam
,
M. M.
,
Abdelhamid
,
T.
, and
Sohankar
,
A.
,
2020
, “
Effect of Cylinder Corner Radius and Attack Angle on Heat Transfer and Flow Topology
,”
Int. J. Mech. Sci.
,
175
, p.
105566
.10.1016/j.ijmecsci.2020.105566
3.
Ishigai
,
S.
,
Nishikawa
,
E.
,
Nishimura
,
K.
, and
Cho
,
K.
,
1972
, “
Experimental Study on Structure of Gas Flow in Tube Banks With Tube Axes Normal to Flow
,”
Bull. JSME
,
15
(
86
), pp.
949
956
.10.1299/jsme1958.15.949
4.
Kostic
,
Z. G.
, and
Oka
,
S. N.
,
1972
, “
Fluid Flow and Heat Transfer With Two Circular Cylinders in Cross Flow
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
283
299
.10.1016/0017-9310(72)90075-0
5.
Tanida
,
Y.
,
Okajima
,
A.
, and
Watanabe
,
Y.
,
1973
, “
Stability of Circular Cylinder Oscillating in Uniform or in Wake
,”
J. Fluid Mech.
,
61
(
4
), pp.
769
784
.10.1017/S0022112073000935
6.
Okajima
,
A.
,
1979
, “
Flow Around Two Tandem Circular Cylinders at Very High Reynolds Numbers
,”
Bull. JSME
,
22
(
166
), pp.
504
511
.10.1299/jsme1958.22.504
7.
Zdravkovich
,
M. M.
,
1977
, “
Review of Flow Interference Between Two Circular Cylinder in Various Arrangement
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
618
633
.10.1115/1.3448871
8.
Zdravkovich
,
M. M.
,
1987
, “
The Effects of Interference Between Circular Cylinder in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
.10.1016/S0889-9746(87)90355-0
9.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem (First Report)
,”
Bull. JSME
,
24
(
188
), pp.
323
331
.10.1299/jsme1958.24.323
10.
Igarashi
,
T.
,
1984
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem (Second Report)
,”
Bull. JSME
,
27
(
233
), pp.
2380
2387
.10.1299/jsme1958.27.2380
11.
Mittal
,
S.
,
Kumar
,
V.
, and
Raghuvanshi
,
A.
,
1997
, “
Unsteady Incompressible Flows Past Two Cylinders in Tandem and Staggered Arrangements
,”
Int. J. Num. Meth. Fluids
,
25
(
11
), pp.
1315
1344
.10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P
12.
Alam
,
M. M.
,
Moriya
,
M.
,
Takai
,
K.
, and
Sakamoto
,
H.
,
2003
, “
Fluctuating Fluid Forces Acting on Two Circular Cylinders in a Tandem Arrangement at a Subcritical Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
1–2
), pp.
139
154
.10.1016/S0167-6105(02)00341-0
13.
Mizushima
,
J.
, and
Suehiro
,
N.
,
2005
, “
Instability and Transition of Flow Past Two Tandem Circular Cylinders
,”
Phys. Fluids
,
17
(
10
), p.
104107
.10.1063/1.2104689
14.
Mahir
,
N.
, and
Altac
,
Z.
,
2008
, “
Numerical Investigation of Convective Heat Transfer in Unsteady Flow Past Two Cylinders in Tandem Arrangement
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1309
1318
.10.1016/j.ijheatfluidflow.2008.05.001
15.
Tasaka
,
Y.
,
Kon
,
S.
,
Schouveiler
,
L.
, and
Le Gal
,
P.
,
2006
, “
Hysteretic Mode Exchange in the Wake of Two Circular Cylinders in Tandem
,”
Phys. Fluids
,
18
(
8
), p.
084104
.10.1063/1.2227045
16.
Palau-Salvador
,
G.
,
Stoesser
,
T.
, and
Rodi
,
W.
,
2008
, “
LES of the Flow Around Two Cylinders in Tandem
,”
J. Fluids Struct.
,
24
(
8
), pp.
1304
1312
.10.1016/j.jfluidstructs.2008.07.002
17.
Juncu
,
G.
,
2007
, “
A Numerical Study of Momentum and Forced Convection Heat Transfer Around Two Tandem Circular Cylinders at Low Reynolds Numbers. Part I: Momentum Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3788
3798
.10.1016/j.ijheatmasstransfer.2007.02.020
18.
Juncu
,
G.
,
2007
, “
A Numerical Study of Momentum and Forced Convection Heat Transfer Around Two Tandem Circular Cylinders at Low Reynolds Numbers. Part II: Forced Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3799
3808
.10.1016/j.ijheatmasstransfer.2007.02.021
19.
Carmo
,
B. S.
,
Meneghini
,
J. R.
, and
Sherwin
,
S. J.
,
2010
, “
Possible States in the Flow Around Two Circular Cylinders in Tandem With Separation in the Vicinity of Drag Inversion Spacing
,”
Phys. Fluids
,
22
(
5
), p.
054101
.10.1063/1.3420111
20.
Patil
,
R. C.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2008
, “
Steady Flow of Power Law Fluids Over a Pair of Cylinders in Tandem Arrangement
,”
Ind. Eng. Chem. Res.
,
47
(
5
), pp.
1660
1683
.10.1021/ie070854t
21.
Patil
,
R. C.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2008
, “
Forced Convection Heat Transfer in Power Law Liquids From a Pair of Cylinders in Tandem Arrangement
,”
Ind. Eng. Chem. Res.
,
47
(
23
), pp.
9141
9164
.10.1021/ie7017178
22.
Nejat
,
A.
,
Abdollahi
,
V.
, and
Vahidkhah
,
K.
,
2011
, “
Lattice Boltzmann Simulation of non-Newtonian Flows Past Confined Cylinders
,”
J. Non-Newtonian Fluid Mech.
,
166
(
12–13
), pp.
689
697
.10.1016/j.jnnfm.2011.03.006
23.
Zhou
,
Y.
, and
Yiu
,
M. W.
,
2006
, “
Flow Structure, Momentum and Heat Transport in a Two-Tandem-Cylinder Wake
,”
J. Fluid Mech.
,
548
(
1
), pp.
17
48
.10.1017/S002211200500738X
24.
Papaioannou
,
G. V.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2006
, “
Three-Dimensionality Effects in Flow Around Two Tandem Cylinders
,”
J. Fluid Mech.
,
558
, pp.
387
413
.10.1017/S0022112006000139
25.
Dwivedi
,
A. R.
, and
Dhiman
,
A. K.
,
2019
, “
Flow and Heat Transfer Analysis Around Tandem Cylinders: Critical Gap Ratio and Thermal Cross-Buoyancy
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
, p.
487
.10.1007/s40430-019-1980-8
26.
Sanyal
,
A.
, and
Dhiman
,
A.
,
2020
, “
Shear-Induced Viscosity Stratified Flow Past a Pair of Heated Side-By-Side Square Cylinders in a Confined Domain
,”
Phys. Fluids
,
32
(
5
), p.
053601
.10.1063/5.0002083
27.
Bijjam
,
S.
, and
Dhiman
,
A. K.
,
2012
, “
CFD Analysis of Two-Dimensional Non-Newtonian Power-Law Flow Across a Circular Cylinder in a Channel
,”
Chem. Eng. Commun.
,
199
(
6
), pp.
767
785
.10.1080/00986445.2011.625064
28.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2008
, “
Steady Flow Across a Confined Square Cylinder: Effect of Power-Law Index and of Blockage Ratio
,”
J. Non-Newtonian Fluid Mech.
,
148
(
1–3
), pp.
141
150
.10.1016/j.jnnfm.2007.04.010
29.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2006
,
Transport Phenomena
,
Wiley
, Madison,
WI
.
30.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
1999
,
Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Sanyal
,
A.
, and
Dhiman
,
A. K.
,
2020
, “
Analysis of a Channel-Confined Non-Newtonian Shear-Thinning Flow Past a Pair of Mildly Heated Side-By-Side Square Cylinders
,”
Numer. Heat Transfer, Part A: Appl.
,
77
(
4
), pp.
409
442
.10.1080/10407782.2019.1690360
32.
Sanyal
,
A.
, and
Dhiman
,
A.
,
2017
, “
Wake Interactions in a Fluid Flow Past a Pair of Side-By-Side Square Cylinders in Presence of Mixed Convection
,”
Phys. Fluids
,
29
(
10
), p.
103602
.10.1063/1.5005118
33.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Washington, DC
.
34.
Shyam
,
R.
, and
Chhabra
,
R. P.
,
2013
, “
Effect of Prandtl Number on Heat Transfer From Tandem Square Cylinders Immersed in Power-Law Fluids in the Low Reynolds Number Regime
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
742
755
.10.1016/j.ijheatmasstransfer.2012.11.001
35.
Chaitanya
,
N. S. K.
, and
Dhiman
,
A. K.
,
2012
, “
Non-Newtonian Power-Law Flow and Heat Transfer Across a Pair of Side-By-Side Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5941
5958
.10.1016/j.ijheatmasstransfer.2012.06.005
36.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Two-Dimensional Steady Poiseuille Flow of Power-Law Fluids Across a Circular Cylinder in a Plane Confined Channel: Wall Effects and Drag Coefficients
,”
Ind. Eng. Chem. Res.
,
46
(
11
), pp.
3820
3840
.10.1021/ie070166+
37.
Patnana
,
V. K.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2010
, “
Two-Dimensional Unsteady Forced Convection Heat Transfer in Power-Law Fluids From a Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4152
4167
.10.1016/j.ijheatmasstransfer.2010.05.038
38.
Slaouti
,
A.
, and
Stansby
,
P. K.
,
1992
, “
Flow Around Two Circular Cylinders by the Random-Vortex Method
,”
J. Fluids Struct.
,
6
(
6
), pp.
641
670
.10.1016/0889-9746(92)90001-J
39.
Lashgari
,
I.
,
Pralits
,
J. O.
,
Giannetti
,
F.
, and
Brandt
,
L.
,
2012
, “
First Instability of the Flow of Shear-Thinning and Shear-Thickening Fluids Past a Circular Cylinder
,”
J. Fluid Mech.
,
701
, pp.
201
227
.10.1017/jfm.2012.151
40.
Sanyal
,
A.
, and
Dhiman
,
A.
,
2018
, “
Effect of Thermal Buoyancy on a Fluid Flowing Past a Pair of Side-By-Side Square Bluff-Bodies in a Low-Reynolds Number Flow Regime
,”
Phys. Fluids
,
30
(
6
), p.
063603
.10.1063/1.5025652
41.
Chatterjee
,
D.
,
Gupta
,
K.
,
Kumar
,
V.
, and
Varghese
,
S. A.
,
2017
, “
Rotation Induced Flow Suppression Around Two Tandem Circular Cylinders at Low Reynolds Number
,”
Fluid Dyn. Res.
,
49
(
4
), p.
045503
.10.1088/1873-7005/aa6728
42.
Oka
,
S.
,
Kostic
,
Z. G.
, and
Sikmanovic
,
S.
,
1972
, “
Investigation of the Heat Transfer Processes in Tube Banks in Cross Flow
,”
Proceedings of International Seminar on Recent Developments in Heat Exchangers
, Trogir, Yugoslavia, Aug. 30–Sep. 6, pp.
279
299
.
43.
Ajith Kumar
,
S.
,
Mathur
,
M.
,
Sameen
,
A.
, and
Anil Lal
,
S.
,
2016
, “
Effect of Prandtl Number on the Laminar Cross Flow Past a Heated Cylinder
,”
Phys. Fluids
,
28
(
11
), p.
113603
.10.1063/1.4966937
44.
Asif
,
M.
, and
Dhiman
,
A.
,
2018
, “
Analysis of Laminar Flow Across a Triangular Periodic Array of Heated Cylinders
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
, p.
350
.10.1007/s40430-018-1273-7
45.
Qin
,
B.
,
Alam
,
M. M.
, and
Zhou
,
Y.
,
2019
, “
Free Vibrations of Two Tandem Elastically Mounted Cylinders in Crossflow
,”
J. Fluid Mech.
,
861
, pp.
349
381
.10.1017/jfm.2018.913
46.
Behara
,
S.
,
Ravikanth
,
B.
, and
Chandra
,
V.
,
2018
, “
Flow-Induced Oscillations of Three Tandem Rotating Cylinders
,”
Phys. Fluids
,
30
(
11
), p.
113604
.10.1063/1.5051773
47.
Zhu
,
H.
, and
Wang
,
K.
,
2019
, “
Wake Adjustment and Vortex-Induced Vibration of a Circular Cylinder With a C-Shaped Plate at a Low Reynolds Number of 100
,”
Phys. Fluids
,
31
, p.
103602
.10.1063/1.5124818
48.
Shang
,
J.
,
Zhou
,
Q.
,
Alam
,
M. M.
,
Liao
,
H.
, and
Cao
,
S.
,
2019
, “
Numerical Studies of the Flow Structure and Aerodynamic Forces on Two Tandem Square Cylinders With Different Chamfered-Corner Ratios
,”
Phys. Fluids
,
31
(
7
), p.
075102
.10.1063/1.5100266
49.
Hosseini
,
N.
,
Griffith
,
M. D.
, and
Leontini
,
J. S.
,
2021
, “
Flow States and Transitions in Flows Past Arrays of Tandem Cylinders
,”
J. Fluid Mech.
,
910
, p.
A34
.10.1017/jfm.2020.975
50.
Chen
,
W.
,
Ji
,
C.
,
Alam
,
M. M.
,
Williams
,
J.
, and
Xu
,
D.
,
2020
, “
Numerical Simulations of Flow Past Three Circular Cylinders in Equilateral-Triangular Arrangements
,”
J. Fluid Mech.
,
891
, p.
A14
.10.1017/jfm.2020.124
51.
Asif
,
M.
,
Chaturvedi
,
R.
, and
Dhiman
,
A.
,
2021
, “
Heat Transfer Enhancement From Inline and Staggered Arrays of Cylinders in a Heat Exchanger Using Alumina-Water Nanofluid
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041025
.10.1115/1.4049195
52.
Jamshed
,
S.
, and
Dhiman
,
A.
,
2021
, “
Channel-Confined Wake Structure Interactions Between Two Permeable Side-by-Side Bars of a Square Cross-Section
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091301
.10.1115/1.4050516
You do not currently have access to this content.