Abstract

Particle image velocimetry is used to experimentally study the wake dynamics behind a near-wall square cylinder subjected to a thick oncoming turbulent boundary layer. The turbulent boundary layer thickness was 3.6 times the cylinder height (h) while the Reynolds number based on the freestream velocity and the cylinder height was 12,750. The gap distance (G) between the bottom face of the cylinder and the wall was varied, resulting in gap ratios (G/h) of 0, 0.3, 0.5, 1.0, 2.0, 4.0, and 8.0. The effects of varying the gap ratio on the mean flow, Reynolds stresses, triple velocity correlation, two-point autocorrelation, and the unsteady wake characteristics were examined. The results indicate that as gap ratio decreases, asymmetry in the wake flow becomes more pronounced, and the size of the mean separation bubbles increases. The magnitudes of the Reynolds stresses and triple velocity correlations generally decrease with the decreasing gap ratio. Moreover, the size of the large-scale structures increases with decreasing gap ratio, and the critical gap ratio, below which Kármán vortex shedding is suppressed, is found to be 0.3. The dominant Strouhal number in the wake flow expressed in terms of the streamwise mean velocity at the cylinder vertical midpoint increases as gap ratio decreases while that based on the freestream velocity is less sensitive to gap ratio for the offset cases (G/h> 0).

References

1.
Martinuzzi
,
R. J.
,
Bailey
,
S. C. C.
, and
Kopp
,
G. A.
,
2003
, “
Influence of Wall Proximity on Vortex Shedding From a Square Cylinder
,”
Exp. Fluids
,
34
(
5
), pp.
585
596
.10.1007/s00348-003-0594-0
2.
Samani
,
M.
, and
Bergstrom
,
D. J.
,
2015
, “
Effect of a Wall on the Wake Dynamics of an Infinite Square Cylinder
,”
Int. J. Heat Fluid Flow
,
55
, pp.
158
166
.10.1016/j.ijheatfluidflow.2015.07.016
3.
Shi
,
L. L.
,
Liu
,
Y. Z.
, and
Wan
,
J. J.
,
2010
, “
Influence of Wall Proximity on Characteristics of Wake Behind a Square Cylinder: PIV Measurements and POD Analysis
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
28
36
.10.1016/j.expthermflusci.2009.08.008
4.
Bosch
,
G.
,
Kappler
,
M.
, and
Rodi
,
W.
,
1996
, “
Experiments on the Flow Past a Square Cylinder Placed Near a wall
,”
Exp. Therm. Fluid Sci.
,
13
(
3
), pp.
292
305
.10.1016/S0894-1777(96)00087-8
5.
Gerrard
,
J.
,
1966
, “
The Mechanics of the Formation Region of Vortices Behind Bluff Bodies
,”
J. Fluid Mech.
,
25
(
2
), pp.
401
413
.10.1017/S0022112066001721
6.
Perry
,
A. E.
,
Chong
,
M. S.
, and
Lim
,
T. T.
,
1982
, “
The Vortex Shedding Process Behind Two-Dimensional Bluff Bodies
,”
J. Fluid Mech.
,
116
, pp.
77
90
.10.1017/S0022112082000378
7.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
8.
Norberg
,
C.
,
1987
,
Effects of Reynolds Number and a Low Intensity Freestream Turbulence on the Flow Around a Circular Cylinder
,
Chalmers University of Technology
,
Sweden
.
9.
Luo
,
S. C.
,
Yazdani
,
M. G.
,
Chew
,
Y. T.
, and
Lee
,
T. S.
,
1994
, “
Effects of Incidence and Afterbody Shape on Flow Past Bluff Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
53
(
3
), pp.
375
399
.10.1016/0167-6105(94)90092-2
10.
Addai
,
S.
,
Mante
,
A. A.
,
Kumahor
,
S.
,
Fang
,
X.
, and
Tachie
,
M. F.
,
2021
, “
Influence of Wall Proximity on the Wake Dynamics Behind a Square Cylinder
,”
ASME
Paper No. FEDSM2021-65593.10.1115/FEDSM2021-65593
11.
Bearman
,
P. W.
, and
Zdravkovich
,
M. M.
,
1978
, “
Flow Around a Circular Cylinder Near a Plane Boundary
,”
J. Fluid Mech.
,
89
(
1
), pp.
33
47
.10.1017/S002211207800244X
12.
Durao
,
D. F. G.
,
Gouveia
,
P. S. T.
, and
Pereira
,
J. C. F.
,
1991
, “
Velocity Characteristics of the Flow Around a Square Cross Section Cylinder Placed Near a Channel Wall
,”
Exp. Fluids
,
11
(
6
), pp.
341
350
.10.1007/BF00211788
13.
Lei
,
C.
,
Cheng
,
L.
, and
Kavanagh
,
K.
,
1999
, “
Re-Examination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
3
), pp.
263
286
.10.1016/S0167-6105(98)00204-9
14.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2008
, “
Comparison of Flow Patterns in the Near Wake of a Circular Cylinder and a Square Cylinder Placed Near a Plane Wall
,”
Ocean Eng.
,
35
(
5–6
), pp.
458
472
.10.1016/j.oceaneng.2008.01.005
15.
Ranjan
,
P.
, and
Dewan
,
A.
,
2017
, “
A PANS Study of Fluid Flow and Heat Transfer From a Square Cylinder Approaching a Plane Wall
,”
Int. J. Therm. Sci.
,
120
, pp.
321
336
.10.1016/j.ijthermalsci.2017.06.015
16.
Straatman
,
A. G.
, and
Martinuzzi
,
R. J.
,
2003
, “
An Examination of the Effect of Boundary Layer Thickness on Vortex Shedding From a Square Cylinder Near a Wall
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
8
), pp.
1023
1037
.10.1016/S0167-6105(03)00050-3
17.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2004
, “
Shear Flow Past a Square Cylinder Near a Wall
,”
Int. J. Eng. Sci.
,
42
(
19–20
), pp.
2119
2134
.10.1016/j.ijengsci.2004.04.007
18.
Fang
,
X.
, and
Tachie
,
M. F.
,
2019b
, “
On the Unsteady Characteristics of Turbulent Separations Over a Forward-Backward-Facing Step
,”
J. Fluid Mech.
,
863
, pp.
994
1030
.10.1017/jfm.2018.962
19.
Castro
,
I. P.
,
1979
, “
Relaxing Wakes Behind Surface-Mounted Obstacles in Rough Wall Boundary Layers
,”
J. Fluid Mech.
,
93
(
04
), pp.
631
659
.10.1017/S0022112079001968
20.
Panigrahi
,
P. K.
, and
Acharya
,
S.
,
1996
, “
Spectral Characteristics of Separated Flow Behind a Surface-Mounted Square Rib
,”
Am. Inst. Aeronaut. Astronaut.
96
, pp.
1
8
.10.2514/6.1996-1931
21.
Farell
,
Ć. S.
,
Carrasquel
,
S.
,
GüVen
,
O.
, and
Patel
,
V. C.
,
1977
, “
Effect of Wind-Tunnel Walls on the Flow Past Circular Cylinder and Cooling Tower Models
,”
ASME J. Fluids Eng.
,
99
(
3
), pp.
470
479
.10.1115/1.3448820
22.
Samimy
,
M.
, and
Lele
,
S. K.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids A
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
23.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
24.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
Hoboken, NJ
.
25.
Kendall
,
A.
, and
Koochesfahani
,
M.
,
2008
, “
A Method for Estimating Wall Friction in Turbulent Wall-Bounded Flows
,”
Exp. Fluids
,
44
(
5
), pp.
773
780
.10.1007/s00348-007-0433-9
26.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Shapiro
,
T. A.
,
2005
, “
Experimental Support for Townsend's Reynolds Number Similarity Hypothesis on Rough Walls
,”
Phys. Fluids
,
17
(
3
), p.
035102
.10.1063/1.1843135
27.
Nematollahi
,
A.
,
Nyantekyi-Kwakye
,
B.
,
Fang
,
X.
,
Tachie
,
M. F.
,
Clark
,
S. P.
, and
Dow
,
K.
,
2017
, “
Experimental Study of Turbulent Boundary Layer Over Different Shaped Cylinders
,”
The 11th Pacific Symposium on Flow Visualization and Image Processing
, Kumamoto, Japan, Dec. 1–3, pp.
1
3
.
28.
Agelinchaab
,
M.
, and
Tachie
,
M. F.
,
2008
, “
PIV Study of Separated and Reattached Open Channel Flow Over Surface Mounted Blocks
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061206
.10.1115/1.2911677
29.
Van Oudheusden
,
B. W.
,
Scarano
,
F.
,
Van Hinsberg
,
N. P.
, and
Watt
,
D. W.
,
2005
, “
Phase-Resolved Characterization of Vortex Shedding in the Near Wake of a Square-Section Cylinder at Incidence
,”
Exp. Fluids
,
39
(
1
), pp.
86
98
.10.1007/s00348-005-0985-5
30.
Taniguchi
,
S.
, and
Miyakoshi
,
K.
,
1990
, “
Fluctuating Fluid Forces Acting on a Circular Cylinder and Interference With a Plane Wall: Effects of Boundary Layer Thickness
,”
Exp. Fluids
,
9
(
4
), pp.
197
204
.10.1007/BF00190418
31.
Chalmers
,
H. A.
,
Fang
,
X.
,
Nyantekyi-Kwakye
,
B.
, and
Tachie
,
M. F.
,
2019
, “
Aspect Ratio Effects on Turbulent Flow Over Forward-Backward-Facing Steps
,”
Proceedings of the Joint Canadian Society for Mechanical Engineering and CFD Society of Canada International Congress
,
London and Ontario, Canada
, June 2–5.10.1017/jfm.2019.617
32.
Hu
,
J. C.
,
Zhou
,
Y.
, and
Dalton
,
C.
,
2006
, “
Effects of the Corner Radius on the Near Wake of a Square Prism
,”
Exp. Fluids
,
40
(
1
), pp.
106
118
.10.1007/s00348-005-0052-2
33.
Arslan
,
T.
,
El Khoury
,
G. K.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2012
, “
Simulations of Flow Around a Three-Dimensional Square Cylinder Using LES and DNS
,”
Seventh Int. Colloquium Bluff Body Aerodyn. Appl. Int. Assoc. Wind Eng.
, pp.
909
918
.
34.
Portela
,
F. A.
,
Papadakis
,
G.
, and
Vassilicos
,
J. C.
,
2017
, “
The Turbulence Cascade in the Near Wake of a Square Prism
,”
J. Fluid Mech.
,
825
, pp.
315
352
.10.1017/jfm.2017.390
35.
Durao
,
D. F. G.
,
Heitor
,
M. V.
, and
Pereira
,
J. C. F.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Exp. Fluids
,
6
(
5
), pp.
298
304
.10.1007/BF00538820
36.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J.-H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.10.1017/S0022112095004435
37.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.10.1017/S0022112099008976
38.
Shi
,
L. L.
,
Liu
,
Y. Z.
, and
Sung
,
H. J.
,
2010
, “
On the Wake With and Without Vortex Shedding Suppression Behind a Two-Dimensional Square Cylinder in Proximity to a Plane Wall
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
10–11
), pp.
492
503
.10.1016/j.jweia.2010.03.002
39.
Kevin
,
K.
,
Monty
,
J.
, and
Hutchins
,
N.
,
2019
, “
Turbulent Structures in a Statistically Three-Dimensional Boundary Layer
,”
J. Fluid Mech.
,
859
, pp.
543
565
.10.1017/jfm.2018.814
40.
Tay
,
G. F. K.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
,
2013
, “
Surface Roughness Effects on the Turbulence Statistics in a Low Reynolds Number Channel Flow
,”
J. Turbul.
,
14
(
1
), pp.
121
146
.10.1080/14685248.2012.737468
41.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2007
, “
Turbulence Structure in Rough- and Smooth- Wall Boundary Layers
,”
J. Fluid Mech.
,
592
, pp.
263
293
.10.1017/S0022112007008518
42.
Ruderich
,
R.
, and
Fernholz
,
H. H.
,
1986
, “
An Experimental Investigation of a Turbulent Shear Flow With Separation, Reverse Flow, and Reattachment
,”
J. Fluid Mech.
,
163
, pp.
283
322
.10.1017/S0022112086002306
You do not currently have access to this content.