Abstract

The separation efficiency of a vane-type separator is greatly affected by swirl instability. The separator consists of a swirling vane, a recovery vane and a main pipe. Driven by centrifugal force, the bubbly flow tends to develop into stratified flow with a continuous gas core floating in the central axis of the separator and facilitating the separation. Yet, the straight gas core can turn into a double helix under some circumstances, for example, if the pressure difference across the orifices of recovery vane falls below the critical value, and swirl instability occurs. In order to reveal the underlying mechanism, a device with adjustable operating pressure was introduced to reproduce the dynamic process of gas core transform between stable and unstable. With the increase of pressure difference, the gas core morphology near the recovery vane will turn from double-helix to straight-line within several seconds. The whole process was investigated further by using the tomographic particle image velocimetry (PIV). Results show that the development of vorticity structures in the swirl flow gives rise to the evolution of gas core morphology and keeps it stable. Furthermore, the direction of axial velocity, which becomes negative by low pressure differences, is found to be crucial in controlling the formation of inner forced vortex and hence leading to the occurrence of swirl instability. In addition, the magnitude of positive axial velocity is identified to be of great significance in vorticity enhancement.

References

1.
Funahashi
,
H.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2017
, “
Improvement of Separator Performance With Modified Pick-Off Ring and Swirler
,”
Nucl. Eng. Des.
,
322
, pp.
360
367
.10.1016/j.nucengdes.2017.07.002
2.
Xiong
,
Z.
,
Lu
,
M.
,
Wang
,
M.
,
Gu
,
H.
, and
Xu
,
C.
,
2014
, “
Study on Flow Pattern and Separation Performance of Air–Water Swirl-Vane Separator
,”
Ann. Nucl. Energy
,
63
, pp.
138
145
.10.1016/j.anucene.2013.07.026
3.
Liu
,
S.
,
Yang
,
L.
,
Zhang
,
D.
, and
Xu
,
J.
,
2018
, “
Separation Characteristics of the Gas and Liquid Phases in a Vane-Type Swirling Flow Field
,”
Int. J. Multiphase Flow
,
107
, pp.
131
145
.10.1016/j.ijmultiphaseflow.2018.05.025
4.
Raoufi
,
A.
,
Shams
,
M.
,
Farzaneh
,
M.
, and
Ebrahimi
,
R.
,
2008
, “
Numerical Simulation and Optimization of Fluid Flow in Cyclone Vortex Finder
,”
Chem. Eng. Process.
,
47
(
1
), pp.
128
137
.10.1016/j.cep.2007.08.004
5.
Wang
,
G.
,
Yan
,
C.
,
Fan
,
G.
,
Wang
,
J.
, and
Liu
,
A.
,
2019
, “
Experimental Study on a Swirl-Vane Separator for Gas–Liquid Separation
,”
Chem. Eng. Res. Des.
,
151
, pp.
108
119
.10.1016/j.cherd.2019.09.003
6.
Li
,
J.
,
Qian
,
Y.
,
Yin
,
J.
,
Li
,
H.
,
Liu
,
W.
, and
Wang
,
D.
,
2018
, “
Large Eddy Simulation of UNSTEADY Flow in Gas–Liquid Separator Applied in Thorium Molten Salt Reactor
,”
Nucl. Sci. Technol.
,
29
(
5
), pp.
1
9
.https://inis.iaea.org/search/search.aspx?orig_q=RN:50018345
7.
Liu
,
L.
, and
Bai
,
B.
,
2019
, “
A Mechanistic Model for the Prediction of Swirling Annular Flow Pattern Transition
,”
Chem. Eng. Sci.
,
199
, pp.
405
416
.10.1016/j.ces.2019.01.039
8.
Pisarev
,
G. I.
,
Gjerde
,
V.
,
Balakin
,
B. V.
,
Hoffmann
,
A. C.
,
Dijkstra
,
H. A.
, and
Peng
,
W.
,
2012
, “
Experimental and Computational Study of the “End of the Vortex” Phenomenon in Reverse-Flow Centrifugal Separators
,”
AIChE J.
,
58
, pp.
1371
1380
.10.1002/aic.12695
9.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Processing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
10.
Yin
,
J.
,
Li
,
J.
,
Ma
,
Y.
,
Li
,
H.
,
Liu
,
W.
, and
Wang
,
D.
,
2015
, “
Study on the Gas Core Formation of a Gas–Liquid Separator
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091301
.10.1115/1.4030198
11.
Yin
,
J.
,
Ma
,
Y.
,
Qian
,
Y.
, and
Wang
,
D.
,
2016
, “
Experimental Investigation of the Bubble Separation Route for an Axial Gas–Liquid Separator for TMSR
,”
Ann. Nucl. Energy
,
97
, pp.
1
6
.10.1016/j.anucene.2016.06.018
12.
Qian
,
Y.
,
Zhang
,
T.
,
Li
,
J.
,
Song
,
Y.
,
Yin
,
J.
,
Wang
,
D.
,
Li
,
H.
, and
Liu
,
W.
,
2019
, “
Simultaneous PIV/PLIF and Pulsed Shadowgraphy Measurement of Gas-Liquid Flows in a Swirling Separator
,”
Nucl. Technol.
,
205
(
1–2
), pp.
272
280
.10.1080/00295450.2018.1486161
13.
Song
,
Y.
,
Wang
,
D.
,
Yin
,
J.
,
Li
,
J.
, and
Cai
,
K.
,
2019
, “
Experimental Studies on Bubble Breakup Mechanism in a Venturi Bubble Generator
,”
Ann. Nuclear Energy
,
130
, pp.
259
270
.10.1016/j.anucene.2019.02.020
14.
Song
,
Y.
,
Shentu
,
Y.
,
Qian
,
Y.
,
Yin
,
J.
, and
Wang
,
D.
,
2021
, “
Experiment and Modeling of Liquid-Phase Flow in a Venturi Tube Using Stereoscopic PIV
,”
Nucl. Eng. Technol.
,
53
, pp.
79
92
.10.1016/j.net.2020.06.027
15.
Wieneke
,
B.
,
2008
, “
Volume Self-Calibration for 3D Particle Image Velocimetry
,”
Exp. Fluids
,
45
, pp.
549
556
.10.1007/s00348-008-0521-5
16.
Elsinga
,
G. E.
,
Scarano
,
F.
,
Wieneke
,
B.
, and
van Oudheusden
,
B. W.
,
2006
, “
Tomographic Particle Image Velocimetry
,”
Exp. Fluids
,
41
(
6
), pp.
933
947
.10.1007/s00348-006-0212-z
17.
Hain
,
R.
,
Kähler
,
C.
, and
Michaelis
,
D.
,
2008
, “
Tomographic and Time Resolved PIV Measurements on a Finite Cylinder Mounted on a Flat Plate
,”
Exp. Fluids
,
45
, pp.
715
724
.10.1007/s00348-008-0553-x
18.
Novara
,
M.
, and
Scarano
,
F.
,
2012
, “
Performances of Motion Tracking Enhanced Tomo-PIV on Turbulent Shear Flows
,”
Exp. Fluids
,
52
(
4
), pp.
1027
1041
.10.1007/s00348-011-1187-y
19.
Sofia
,
L. I. A.
,
Staffan
,
L. T.
, and
Henrik
,
L.
,
2018
, “
Tomographic PIV of Flow Through Ordered Thin Porous Media
,”
Exp. Fluids
,
59
(
6
), p.
96
.
20.
Yin
,
J.
,
Qian
,
Y.
,
Zhang
,
T.
, and
Wang
,
D.
,
2019
, “
Measurement on the Flow Structure of a Gas-Liquid Separator Applied in TMSR
,”
Ann. Nucl. Energy
,
126
, pp.
20
32
.10.1016/j.anucene.2018.11.009
21.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
You do not currently have access to this content.