Abstract

This study comprehensively investigates the flow features and energy loss mechanisms under stall conditions based on computational fluid dynamics (CFD) and hydraulic loss visualization techniques. The three-dimensional unsteady Reynolds-averaged Navier– Stokes (URANS) equations were solved using the shear stress transport (SST) k–ω turbulence model. Furthermore, the entire flow domain of the vertical volute pump was considered to capture the boundary flow behavior accurately. The results illustrate that the critical stall condition occurs at 0.7Qd, where the H–Q curve exhibits a positive slope, and the deep stall condition occurs at 0.65Qd. The growth rate of energy loss from critical stall to deep stall is 182.2%. In the stall condition, a secondary vortex appears at the impeller inlet. A high energy loss occurs at the suction side and trailing edge in the impeller caused by the reduction in the effective inflow area. The energy loss in the blade suction side guide vane is primarily due to the friction loss under the critical stall condition. By contrast, under the deep stall condition, the energy loss in the outlet of the guide vane is mainly the impact loss from the volute of the rear gunner. The impact effect can result in high energy losses near the volute tongue. The entropy production analysis demonstrates that the hydraulic losses in the diffuser are literately greater than that in the impeller and inlet pipe. Hence, optimization of such components can be taken into consideration in future works for performance improvement.

References

1.
Yang
,
G.
,
Zhao
,
X. T.
,
Zhang
,
D. S.
,
Geng
,
L.
,
Yang
,
X. Q.
, and
Gao
,
X. F.
,
2021
, “
Hydraulic Components' Matching Optimization Design and Entropy Production Analysis in a Large Vertical Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
35
(
11
), pp.
5033
5048
.10.1007/s12206-021-1021-2
2.
Gan
,
X. C.
,
2020
, “
Multi-Objective Optimization on the Vertical Inline Pump Based on Modified Particle Swarm Optimization
,”
Master's thesis
, Zhenjiang, China.https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkEcTGK3Qt5VuzQzk0e7M1zy2Iux1d2JOyp-S2KHMqk1wKjzylnbiuRx6FOMd3DbqW&uniplatform=NZKPT
3.
Zhao
,
X. R.
,
Luo
,
Y.
,
Wang
,
Z. W.
,
Xiao
,
Y. X.
, and
François
,
A.
,
2019
, “
Unsteady Flow Numerical Simulations on Internal Energy Dissipation for a Low-Head Centrifugal Pump at Part-Load Operating Conditions
,”
Energies
,
12
(
10
), p.
2013
.10.3390/en12102013
4.
Kan
,
K.
,
Zheng
,
Y.
,
Chen
,
Y. J.
,
Xie
,
Z. S.
,
Yang
,
G.
, and
Yang
,
C. X.
,
2018
, “
Numerical Study on the Internal Flow Characteristics of an Axial-Flow Pump Under Stall Conditions
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4683
4695
.10.1007/s12206-018-0916-z
5.
Jia
,
X.
,
Lv
,
H.
, and
Zhu
,
Z.
,
2022
, “
Research on the Influence of Impeller Tip Clearance on the Internal Flow Loss of Axial Circulating Pump Under Unpowered Driven Condition
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021202
.10.1115/1.4055990
6.
Han
,
Y.
,
Li
,
H.
,
Tiganik
,
T.
,
Wang
,
Y.
, and
Zhou
,
L.
,
2022
, “
Influence Mechanism of Trimming Impeller Diameter in a Centrifugal Pump by Computational Fluid Dynamics Investigation
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021205
.10.1115/1.4056210
7.
Gu
,
Y.
,
Li
,
J.
,
Wang
,
P.
,
Cheng
,
L.
,
Qiu
,
Y.
,
Wang
,
C.
, and
Si
,
Q.
,
2022
, “
An Improved One-Dimensional Flow Model for Side Chambers of Centrifugal Pumps Considering the Blade Slip Factor
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
091207
.10.1115/1.4054138
8.
Liu
,
X.
,
Farhat
,
M.
,
Li
,
Y.
,
Liu
,
Z.
, and
Yang
,
W.
,
2022
, “
Onset of Flow Separation Phenomenon in a Low-Specific Speed Centrifugal Pump Impeller
,”
ASME J. Fluids Eng
,.
145
(
2
), p.
021206
.10.1115/1.4056213
9.
Wang
,
W. J.
,
Tai
,
G. Y.
,
Giorgio
,
P.
, and
Yuan
,
S. Q.
,
2022
, “
Numerical Investigation of the Effect of the Closure Law of Wicket Gates on the Transient Characteristics of Pump-Turbine in Pump Mode
,”
Renewable Energy
,
194
, pp.
719
733
.10.1016/j.renene.2022.05.129
10.
Yan
,
T.
,
Qiu
,
B.
,
Yuan
,
J.
,
Pavesi
,
G.
,
Zhao
,
F.
, and
Wang
,
H.
,
2023
, “
Flow State at Impeller Inlet: Optimization of Conical Frustum Section of Elbow Inlet Conduit in Large Low-Lift Pump Station
,”
ASME J. Fluids Eng.
,
145
(
4
), p.
041201
.10.1115/1.4056452
11.
Li
,
D.
,
Song
,
Y.
,
Lin
,
S.
,
Wang
,
H.
,
Qin
,
Y.
, and
Wei
,
X.
,
2021
, “
Effect Mechanism of Cavitation on the Hump Characteristic of a Pump-Turbine
,”
Renewable Energy
,
167
, pp.
369
383
.10.1016/j.renene.2020.11.095
12.
Li
,
D.
,
Qin
,
Y.
,
Wang
,
J.
,
Zhu
,
Y. T.
,
Wang
,
H. J.
, and
Wei
,
X. Z.
,
2022
, “
Optimization of Blade High-Pressure Edge to Reduce Pressure Fluctuations in Pump-Turbine Hump Region
,”
Renewable Energy
,
181
, pp.
24
38
.10.1016/j.renene.2021.09.013
13.
Zhuo
,
P. J.
,
Dai
,
J. C.
,
Li
,
Y. F.
,
Chen
,
T.
, and
Mou
,
J. G.
,
2018
, “
Unsteady Flow Structures in Centrifugal Pump Under Two Types of Stall Conditions
,”
J. Hydrodyn.
,
30
(
6
), pp.
1038
1044
.10.1007/s42241-018-0125-3
14.
Zhou
,
P. J.
,
2016
, “
Study on Effects of Blade Number on Stall Characteristics for Centrifugal Pump Impeller
,”
J. Mech. Eng.
,
52
(
10
), p.
207
.10.3901/JME.2016.10.207
15.
Feng
,
J.
,
Ge
,
Z. G.
,
Yang
,
H.
,
Zhu
,
G. J.
,
Li
,
C. H.
, and
Luo
,
X. Q.
,
2021
, “
Rotating Stall Characteristics in the Vaned Diffuser of a Centrifugal Pump
,”
Ocean Eng.
,
229
, p.
108955
.10.1016/j.oceaneng.2021.108955
16.
Li
,
W.
,
Ji
,
L.
,
Li
,
E.
,
Zhou
,
L.
, and
Agarwal
,
R. K.
,
2021
, “
Effect of Tip Clearance on Rotating Stall in a Mixed-Flow Pump
,”
ASME J. Turbomach.
,
143
(
9
), p.
091013
.10.1115/1.4050625
17.
Meng
,
F.
,
Li
,
Y.
, and
Pei
,
J.
,
2021
, “
Energy Characteristics of Full Tubular Pump Device With Different Backflow Clearances Based on Entropy Production
,”
Appl. Sci.
,
11
, p.
3376
.10.3390/app11083376
18.
Ye
,
W. X.
,
Chen
,
Y. N.
,
Kazuyoshi
,
M.
, and
Luo
,
X. W.
,
2020
, “
Numerical Simulation on Role of the Rotating Stall on the Hump Characteristic in a Mixed Flow Pump Using Modified Partially Averaged Navier-Stokes Model
,”
Renewable Energy
,
166
, pp.
91
107
.10.1016/j.renene.2020.11.066
19.
Yang
,
F.
,
Zhang
,
Y. Q.
,
Yuan
,
Y.
,
Liu
,
C.
,
Li
,
Z. B.
, and
Ahmed
,
N.
,
2021
, “
Numerical and Experimental Analysis of Flow and Pulsation in Hump Section of Siphon Outlet Conduit of Axial Flow Pump Device
,”
Appl. Sci.
,
11
(
11
), p.
4941
.10.3390/app11114941
20.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A high-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
21.
Herwig
,
H.
,
Gloss
,
D.
, and
Wenterod
,
T.
,
2008
, “
A New Approach to Understanding and Modelling the Influence of Wall Roughness on Friction Factors for Pipe and Channel Flows
,”
J. Fluid Mech.
,
613
, pp.
35
53
.10.1017/S0022112008003534
22.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
You do not currently have access to this content.