Abstract

Two-phase wakes generated from a cylinder in a crossflow were experimentally studied. A water–air mixture traveled through a vertical water channel with a rectangular cross section, in which a cylinder was installed horizontally. Liquid Reynolds numbers, based on a cylinder diameter of 9.5 mm, were varied from Re = 100 to 3,000; the air superficial velocities were varied from jg = 0.06 m/s to 0.60 m/s; and mean bubble diameters were varied from 0.48 mm to 3.5 mm. Void fraction distribution in the wake of the cylinder was determined from high-speed visualizations, where a correlation was applied to the shadow fraction measurements to account for overlapping bubble images. It divided the wakes into a liquid-phase region with a low void fraction relative to its freestream condition (α/α<1/2) and a bubble-trapping region with a relatively high void fraction (α/α>2). The liquid-phase region occurred in all flow conditions, but its length decreased with increasing Reynolds number. In contrast, the bubble-trapping region occurred only at relatively high Reynolds numbers depending on the bubble size and air superficial velocity. Transitional bubble-trapping behavior was identified at Re = 1,200 for the 3.5 mm bubbles, where bubble trapping only occurred at low air superficial velocities. Once the bubble-trapping region developed sufficiently, the location of the maximum void fraction was consistently located at y/D = 1.3–1.5 downstream from the center of the cylinder.

References

1.
Khushnood
,
S.
,
Khan
,
Z. M.
,
Malik
,
M. A.
,
Koreshi
,
Z. U.
, and
Khan
,
M. A.
,
2004
, “
A Review of Heat Exchanger Tube Bundle Vibrations in Two-Phase Cross-Flow
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
233
251
.10.1016/j.nucengdes.2003.11.024
2.
Ribatski
,
G.
, and
Thome
,
J. R.
,
2007
, “
Two-Phase Flow and Heat Transfer Across Horizontal Tube Bundles‐a Review
,”
Heat Transfer Eng.
,
28
(
6
), pp.
508
524
.10.1080/01457630701193898
3.
Garimella
,
S. V.
, and
Harirchian
,
T.
,
2012
, “
Two-Phase Operation of Microchannel Heat Sinks
,”
Encyclopedia of Thermal Packaging
,
World Scientific Publishing Company
, NJ, pp.
59
81
.
4.
Wu
,
Z.-Y.
,
Wang
,
H.
,
Cai
,
W.-H.
, and
Jiang
,
Y.-Q.
,
2016
, “
Numerical Investigation of Boiling Heat Transfer on the Shell-Side of Spiral Wound Heat Exchanger
,”
Heat Mass Transfer
,
52
(
9
), pp.
1973
1982
.10.1007/s00231-016-1867-5
5.
Jensen
,
M. K.
, and
Hsu
,
J.-T.
,
1988
, “
A Parametric Study of Boiling Heat Transfer in a Horizontal Tube Bundle
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
4a
), pp.
976
981
.10.1115/1.3250601
6.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
) p.
041002
.10.1115/1.4005300
7.
Rooyen
,
E.
,
van
,
F.
,
Agostini
,
N.
,
Borhani
,
J.
, and
Thome
,
R.
,
2012
, “
Boiling on a Tube Bundle: Part I—Flow Visualization and Onset of Dryout
,”
Heat Transfer Eng.
,
33
(
11
), pp.
913
929
.10.1080/01457632.2012.654724
8.
Swain
,
A.
, and
Das
,
M. K.
,
2014
, “
A Review on Saturated Boiling of Liquids on Tube Bundles
,”
Heat Mass Transfer
,
50
(
5
), pp.
617
637
.10.1007/s00231-013-1257-1
9.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2014
, “
Confined Jet Impingement With Boiling on a Variety of Enhanced Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
10
) p.
101503
.10.1115/1.4027942
10.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
11.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2004
, “
Damping of Heat Exchanger Tubes in Two-Phase Flow: Review and Design Guidelines
,”
ASME J. Press. Vessel Technol.
,
126
(
4
), pp.
523
533
.10.1115/1.1806443
12.
Chung
,
P. M.-Y.
,
Kawaji
,
M.
,
Kawahara
,
A.
, and
Shibata
,
Y.
,
2004
, “
Two-Phase Flow Through Square and Circular Microchannels—Effects of Channel Geometry
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
546
552
.10.1115/1.1777227
13.
Kawaji
,
M.
,
Mori
,
K.
, and
Bolintineanu
,
D.
,
2009
, “
The Effects of Inlet Geometry and Gas-Liquid Mixing on Two-Phase Flow in Microchannels
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041302
.10.1115/1.3089543
14.
Yokosawa
,
M.
,
Kozawa
,
Y.
,
Inoue
,
A.
, and
Aoki
,
S.
,
1986
, “
Studies on Two-Phase Cross Flow. Part III: Characteristics of Unsteady Flow Behavior
,”
Int. J. Multiph. Flow
,
12
(
2
), pp.
185
202
.10.1016/0301-9322(86)90025-X
15.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
, and
Kim
,
B. S.
,
1989
, “
Vibration of Tube Bundles in Two-Phase Cross-Flow: Part 1—Hydrodynamic Mass and Damping
,”
ASME J. Press. Vessel Technol.
,
111
(
4
), pp.
466
477
.10.1115/1.3265705
16.
Joo
,
Y.
, and
Dhir
,
V. K.
,
1994
, “
An Experimental Study of Drag on a Single Tube and on a Tube in an Array Under Two-Phase Cross Flow
,”
Int. J. Multiph. Flow
,
20
(
6
), pp.
1009
1019
.10.1016/0301-9322(94)90051-5
17.
Milenković
,
R.
,
ŽSigg
,
B.
, and
Yadigaroglu
,
G.
,
2007
, “
Bubble Clustering and Trapping in Large Vortices. Part 1: Triggered Bubbly Jets Investigated by Phase-Averaging
,”
Int. J. Multiph. Flow
,
33
(
10
), pp.
1088
1110
.10.1016/j.ijmultiphaseflow.2007.05.003
18.
Milenković
,
R.
, Ž
Sigg
,
B.
, and
Yadigaroglu
,
G.
,
2007
, “
Bubble Clustering and Trapping in Large Vortices. Part 2: Time-Dependent Trapping Conditions
,”
Int. J. Multiph. Flow
,
33
(
10
), pp.
1111
1125
.10.1016/j.ijmultiphaseflow.2007.05.005
19.
Ruetsch
,
G. R.
, and
Meiburg
,
E.
,
1993
, “
On the Motion of Small Spherical Bubbles in Two‐Dimensional Vortical Flows
,”
Phys. Fluids A Fluid Dyn.
,
5
(
10
), pp.
2326
2341
.10.1063/1.858750
20.
Sene
,
K. J.
,
Hunt
,
J. C. R.
, and
Thomas
,
N. H.
,
1994
, “
The Role of Coherent Structures in Bubble Transport by Turbulent Shear Flows
,”
J. Fluid Mech.
,
259
, pp.
219
240
.10.1017/S0022112094000108
21.
Inoue
,
A.
,
Kozawa
,
Y.
,
Yokosawa
,
M.
, and
Aoki
,
S.
,
1986
, “
Studies on Two-Phase Cross Flow. Part I: Flow Characteristics Around a Cylinder
,”
Int. J. Multiph. Flow
,
12
(
2
), pp.
149
167
.10.1016/0301-9322(86)90023-6
22.
Yokosawa
,
M.
,
Kozawa
,
Y.
,
Inoue
,
A.
, and
Aoki
,
S.
,
1986
, “
Studies on Two-Phase Cross Flow. Part II: Transition Reynolds Number and Drag Coefficient
,”
Int. J. Multiph. Flow
,
12
(
2
), pp.
169
184
.10.1016/0301-9322(86)90024-8
23.
Murai
,
Y.
,
Sasaki
,
T.
,
Ishikawa
,
M.
, and
Yamamoto
,
F.
,
2005
, “
Bubble-Driven Convection Around Cylinders Confined in a Channel
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
117
123
.10.1115/1.1852478
24.
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2001
, “
Three-Dimensional Numerical Analysis of Bubbly Flow Around a Circular Cylinder
,”
JSME Int. J. Ser. B
,
44
(
3
), pp.
319
327
.10.1299/jsmeb.44.319
25.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders
, 1st ed.,
Fundamentals, Oxford University Press
,
Oxford, UK
.
26.
Wheeler
,
J.
,
Worosz
,
T.
, and
Kim
,
S.
,
2015
, “
Experiments on the Effects of a Spacer Grid in Air-Water Two-Phase Flow
,”
Nucl. Technol.
,
190
(
3
), pp.
215
224
.10.13182/NT14-69
27.
Kim
,
D.
, and
Rau
,
M.
,
2022
, “
High-Speed Visualization of Bubble Trapping Wakes in Liquid-Gas Flow Around a Cylinder
,”
ASME J. Fluids Eng.
,
144
(
4
) p.
040905
.10.1115/1.4053572
28.
Kim
,
D.
, and
Rau
,
M. J.
, “
A Phase-Resolved Force Analysis of Bubble Trapping Behind Cylinders in Liquid-Gas Flows
,” in preparation.
29.
Cheong
,
W. J.
, and
Carr
,
P. W.
,
1987
, “
The Surface Tension of Mixtures of Methanol, Acetonitrile, Tetrahydrofuran, Isopropanol, Tertiary Butanol and Dimethyl-Sulfoxide With Water at 25 °C
,”
J. Liq. Chromatogr.
,
10
(
4
), pp.
561
581
.10.1080/01483918708069009
30.
Murai
,
Y.
,
Matsumoto
,
Y.
, and
Yamamoto
,
F.
,
2001
, “
Three-Dimensional Measurement of Void Fraction in a Bubble Plume Using Statistic Stereoscopic Image Processing
,”
Exp. Fluids
,
30
(
1
), pp.
11
21
.10.1007/s003480000129
31.
Belden
,
J.
,
Ravela
,
S.
,
Truscott
,
T. T.
, and
Techet
,
A. H.
,
2012
, “
Three-Dimensional Bubble Field Resolution Using Synthetic Aperture Imaging: Application to a Plunging Jet
,”
Exp. Fluids
,
53
(
3
), pp.
839
861
.10.1007/s00348-012-1322-4
32.
Kitagawa
,
A.
,
Sugiyama
,
K.
, and
Murai
,
Y.
,
2004
, “
Experimental Detection of Bubble–Bubble Interactions in a Wall-Sliding Bubble Swarm
,”
Int. J. Multiph. Flow
,
30
(
10
), pp.
1213
1234
.10.1016/j.ijmultiphaseflow.2004.07.002
33.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man. Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
You do not currently have access to this content.