Abstract

Airlift systems are widely used for mass, momentum, and energy transport, particularly in hydrothermal and oil extraction wells. Predicting the impact of nozzle design parameters, such as perforation diameters and air injection areas, remains challenging. This study experimentally investigates an annular airlift pump to understand the influence of various nozzle configurations on performance. Using radial and axial injection with different perforation counts, high-speed camera visualization categorized flow regimes (bubbly, slug, slug-churn) across different gas flow rates. Dimensional analysis assessed energy efficiency, revealing a strong dependence on submergence ratio and perforation-to-inlet pipe area ratio. A dimensionless number, analogous to a restriction coefficient, explained discrepancies with theoretical models at high Reynolds numbers. A specific dimensionless group unified the experimental results for large submergence ratios (greater than 0.8). This study provides insights into optimizing airlift pump performance by exploring the effects of nozzle configurations on transport phenomena.

References

1.
Kassab
,
S. Z.
,
Kandil
,
H. A.
,
Warda
,
H. A.
, and
Ahmed
,
W. H.
,
2009
, “
Air-Lift Pumps Characteristics Under Two-Phase Flow Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
88
98
.10.1016/j.ijheatfluidflow.2008.09.002
2.
Clark
,
N. N.
, and
Dabolt
,
R. J.
,
1986
, “
A General Design Operating in Slug Equation for Air Lift Pumps Flow
,”
AIChE J.
,
32
(
1
), pp.
56
64
.10.1002/aic.690320107
3.
Beasley
,
D. E.
, and
Liburdy
,
J. A.
,
1987
,
Air-Lift Sampling System for Hazardous Liquids
,
Department of Mechanical Engineering, Clemson University
, Report No. DP-MS-87-16.
4.
Hanafizadeh
,
P.
, and
Ghorbani
,
B.
,
2012
, “
Review Study on Airlift Pumping Systems
,”
Multiphase Sci. Technol.
,
24
(
4
), pp.
323
362
.10.1615/MultScienTechn.v24.i4.30
5.
Yong
,
Z.
, and
Jianliang
,
Z.
,
2014
, “
Technical Improvements and Application of Air-Lift Reverse Circulation Drilling Technology to Ultra-Deep Geothermal Well
,”
Procedia Eng.
,
73
, pp.
243
251
.10.1016/j.proeng.2014.06.194
6.
Parker
,
N. C.
,
Suttle
,
M. A.
, and
Fitzmayer
,
K.
,
1984
, “
Total Gas Pressure and Oxygen and Nitrogen Saturation in Warm Water Ponds Aerated With Airlift Pumps
,”
Aquacultural Eng.
,
3
(
2
), pp.
91
102
.10.1016/0144-8609(84)90001-3
7.
Choi
,
K. H.
,
2021
, “
Prediction of Gas Holdup in Various Types of Airlift Reactors
,”
Korean J. Chem. Eng.
,
38
(
9
), pp.
1781
1790
.10.1007/s11814-021-0822-4
8.
White
,
F. M.
,
1999
,
Fluid Mechanics
, 4th ed.,
MC Graw Hill
,
New York
.
9.
Shallouf
,
M.
,
Ahmed
,
W. H.
, and
Abdou
,
S.
,
2019
, “
Engineered-Airlift Pumps for Aquaculture Applications Using Multiphase Flow Analysis
,”
Aquacultural Eng.
,
87
, p.
101998
.10.1016/j.aquaeng.2019.101998
10.
Wicomb
,
W. N.
,
Cooper
,
D. K. C.
, and
Novitzky
,
D.
,
1985
, “
An Airlift Pump Device for Low Pressure Perfusion Storage of the Isolated Heart
,”
Cryobiology
,
22
(
5
), pp.
401
408
.10.1016/0011-2240(85)90150-6
11.
Hu
,
D.
,
Tang
,
C.
,
Cai
,
S.
, and
Zhang
,
F.
,
2012
, “
The Effect of Air Injection Method on the Airlift Pump Performance
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111302
.10.1115/1.4007592
12.
Fan
,
W.
,
Chen
,
J.
,
Pan
,
Y.
,
Huang
,
H.
,
Chen
,
C. T. A.
, and
Chen
,
Y.
,
2013
, “
Experimental Study on the Performance of an Air-Lift Pump for Artificial Upwelling
,”
Ocean Eng.
,
59
, pp.
47
57
.10.1016/j.oceaneng.2012.11.014
13.
Pan
,
Y.
,
Li
,
Y.
,
Fan
,
W.
,
Zhang
,
D.
,
Qiang
,
Y.
,
Jiang
,
Z. P.
, and
Chen
,
Y.
,
2019
, “
A Sea Trial of Air-Lift Concept Artificial Upwelling in the East China Sea
,”
J. Atmos. Oceanic Technol.
,
36
(
11
), pp.
2191
2204
.10.1175/JTECH-D-18-0238.1
14.
Qiang
,
Y.
,
Fan
,
W.
,
Xiao
,
C.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2018
, “
Effects of Operating Parameters and Injection Method on the Performance of an Artificial Upwelling by Using Airlift Pump
,”
Appl. Ocean Res.
,
78
, pp.
212
222
.10.1016/j.apor.2018.06.006
15.
Ahmed
,
W. H.
,
Aman
,
A. M.
,
Badr
,
H. M.
, and
Al-Qutub
,
A. M.
,
2016
, “
Air Injection Methods: The Key to a Better Performance of Airlift Pumps
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
354
365
.10.1016/j.expthermflusci.2015.09.022
16.
Zuo
,
J.
,
Li
,
F.
,
Zhang
,
N.
,
He
,
D.
,
Wang
,
W.
, and
Zhang
,
J.
,
2020
, “
Experimental Study on Hydraulic Characteristics of Pneumatic Lifting Pump
,”
Water
,
12
(
2
), p.
388
.10.3390/w12020388
17.
Parker
,
G. J.
,
1980
, “
The Effect of Footpiece Design on the Performance of a Small Air Lift Pump
,”
Int. J. Heat Fluid Flow
,
2
(
4
), pp.
245
252
.10.1016/0142-727X(80)90018-1
18.
Abou Taleb
,
F. S.
, and
Al-Jarrah
,
J. A.
,
2017
, “
Experimental Study of an Air Lift Pump
,”
Eng., Technol. Appl. Sci. Res.
,
7
(
3
), pp.
1676
1680
.10.48084/etasr.1207
19.
Khalil
,
M. F.
,
Elshorbagy
,
K. A.
,
Kassab
,
S. Z.
, and
Fahmy
,
R. I.
,
1999
, “
Effect of Air Injection Method on the Performance of an Air Lift Pump
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
598
604
.10.1016/S0142-727X(99)00051-X
20.
de Cachard
,
F.
, and
Delhaye
,
J. M.
,
1996
, “
A Slugh-Churn Flow Model for Small-Diameter Airlift Pumps
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
627
649
.10.1016/0301-9322(96)00003-1
21.
Wang
,
Z.
,
Kang
,
Y.
,
Wang
,
X.
,
Wu
,
S.
, and
Li
,
X.
,
2018
, “
Investigation of the Hydrodynamics of Slug Flow in Airlift Pumps
,”
Chin. J. Chem. Eng.
,
26
(
12
), pp.
2391
2402
.10.1016/j.cjche.2018.04.015
22.
Mahrous
,
A. F.
,
2013
, “
Airlift Pump With a Gradually Enlarged Segment in the Riser Tube
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031301
.10.1115/1.4023296
23.
Oueslati
,
A.
, and
Megriche
,
A.
,
2017
, “
The Effect of Liquid Temperature on the Performance of an Airlift Pump
,”
Energy Procedia
,
119
, pp.
693
701
.10.1016/j.egypro.2017.07.096
24.
Castro
,
W. E.
,
Zielinski
,
P. B.
, and
Sandifer
,
P. A.
,
1975
, “
Performance Characteristics of Air Lift Pumps of Short Length and Small Diameter
,”
J. Aquaculture Soc.
,
6
(
4
), pp.
451
461
.10.1111/j.1749-7345.1975.tb00039.x
25.
Kim
,
S. H.
,
Sohn
,
C. H.
, and
Hwang
,
J. Y.
,
2014
, “
Effects of Tube Diameter and Submergence Ratio on Bubble Pattern and Performance of Air-Lift Pump
,”
Int. J. Multiphase Flow
,
58
, pp.
195
204
.10.1016/j.ijmultiphaseflow.2013.09.007
26.
Awari
,
G. K.
,
Bhuyar
,
L. B.
, and
Wakde
,
D. G.
,
2007
, “
A Generalized Gas-Liquid Two-Phase Flow Analysis for Efficient Operation of Airlift Pump
,”
J. Braz. Soc. Mech. Sci. Eng.
,
29
(
3
), pp.
307
312
.10.1590/S1678-58782007000300011
27.
Huang
,
S.
,
Ma
,
T.
,
Wang
,
D.
, and
Lin
,
Z.
,
2013
, “
Study on Discharge Coefficient of Perforated Orifices as a New Kind of Flowmeter
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
74
83
.10.1016/j.expthermflusci.2012.11.022
28.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas‐Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
29.
Das
,
G.
,
Das
,
P. K.
,
Purohit
,
N. K.
, and
Mitra
,
A. K.
,
1999
, “
Flow Pattern Transition During Gas Liquid Upflow Through Vertical Concentric Annuli—Part II: Mechanistic Models
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
902
907
.10.1115/1.2823553
30.
Julia
,
J. E.
, and
Hibiki
,
T.
,
2011
, “
Flow Regime Transition Criteria for Two-Phase Flow in a Vertical Annulus
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
993
1004
.10.1016/j.ijheatfluidflow.2011.06.001
31.
Ligus
,
G.
,
Zając
,
D.
,
Masiukiewicz
,
M.
, and
Anweiler
,
S.
,
2019
, “
A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios With the Use of Image Analysis
,”
Energies
,
12
(
4
), p.
735
.10.3390/en12040735
32.
Moisidis
,
C. T.
, and
Kastrinakis
,
E. G.
,
2010
, “
Two-Phase Flow Pattern Transitions of Short Airlift Pumps
,”
J. Hydraulic Res.
,
48
(
5
), pp.
680
685
.10.1080/00221686.2010.515382
33.
Wang
,
Z.
,
Jin
,
Y.
, and
Huang
,
F.
,
2020
, “
Investigation of the Inner Structure of Gas–Liquid Flow in Airlift Pumps by Laser‐High Speed Visualization Technology
,”
Asia‐Pacific J. Chem. Eng.
,
15
(
5
), p.
e2509
.10.1002/apj.2509
34.
Malekzadeh
,
R.
,
Mudde
,
R. F.
, and
Henkes
,
R. A.
,
2012
, “
Dual-Frequency Severe Slugging in Horizontal Pipeline-Riser Systems
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121301
.10.1115/1.4007898
35.
Law
,
D.
, and
Battaglia
,
F.
,
2013
, “
Numerical Simulations for Hydrodynamics of Air-Water External Loop Airlift Reactor Flows With Bubble Break-Up and Coalescence Effects
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081302
.10.1115/1.4024396
36.
Lund
,
J. W.
, and
Boyd
,
T. L.
,
2016
, “
Direct Utilization of Geothermal Energy 2015 Worldwide Review
,”
Geothermics
,
60
, pp.
66
93
.10.1016/j.geothermics.2015.11.004
37.
Ravier
,
G.
,
Graff
,
J. J.
, and
Villadangos
,
G.
,
2015
, “
Operating a Lineshaft Production Pump in a Small Pump Chamber Under Highly Aggressive Geothermal Fluid Conditions: Results From the Soultz EGS site
,”
Proceedings of World Geothermal Congress
,
Melbourne
, Australia, Apr. 19–24, pp.
1
10
.https://www.geothermalenergy.org/pdf/IGAstandard/WGC/2015/26066.pdf
38.
Baujard
,
C.
,
Genter
,
A.
,
Dalmais
,
E.
,
Maurer
,
V.
,
Hehn
,
R.
,
Rosillette
,
R.
,
Vidal
,
J.
, and
Schmittbuhl
,
J.
,
2017
, “
Hydrothermal Characterization of Wells GRT-1 and GRT-2 in Rittershoffen, France: Implications on the Understanding of Natural Flow Systems in the Rhine Graben
,”
Geothermics
,
65
, pp.
255
268
.10.1016/j.geothermics.2016.11.001
39.
Fisch
,
H.
,
Uhde
,
J.
,
Bems
,
C.
,
Lang
,
P.
,
Bartels
,
J.
,
2015
, “
Hydraulic Testing and Reservoir Characterization of the Taufkirchen Site in the Bavarian Molasse Basin, Germany
,” accessed Aug. 7, 2024, https://www.researchgate.net/publication/284484895
40.
Omar
,
I.
, and
Saleh
,
A. A.
,
2023
, “
A Comprehensive Review of Design and Operational Parameters Influencing Airlift Pump Performance
,”
Math. Modell. Eng. Probl.
,
10
(
3
), pp.
1063
1073
.10.18280/mmep.100342
41.
Pacheco
,
J. J.
,
Gutiérrez
,
J.
,
Rubio
,
C.
,
Gutiérrez
,
H. C.
,
Arriaga
,
J. P.
, and
Gutiérrez
,
A.
,
2019a
, “
Estudio Experimental de la Extracción de Salmuera Geotérmica a Diferentes Relaciones de Inmersión Utilizando Un Sistema Airlift
,” SOMIM., accessed Aug. 8, 2024, pp.
741
747
. http://somim.org.mx/memorias/memorias2019/articulos/A4_173.pdf
42.
Pacheco
,
J. J.
,
Gutierrez
,
J.
,
Rubio
,
C.
,
Guerrero
,
R.
,
Gutierrez
,
H. C.
, and
Gutierrez
,
A.
,
2019b
, “
Evaluación Sobre Las Variables Termo Hidráulicas En la Extracción de Salmuera Geotérmica Utilizando Un Sistema Airlift Para Diferentes Relaciones de Inmersión
,”
Congreso Iberoamericano de Ingeniería Mecánica
, Cartagena, Spain, Nov. 12–15, pp.
356
363
.
43.
Caetano
,
E. F.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1992
, “
Upward Vertical Two-Phase Flow Through an Annulus—Part I: Single-Phase Friction Factor, Taylor Bubble Rise Velocity, and Flow Pattern Prediction
,”
ASME J. Energy Res.. Technol.
,
114
(
1
), pp.
1
13
.10.1115/1.2905917
44.
Griffith
,
P.
, and
Wallis
,
G. B.
,
1961
, “
Two-Phase Slug Flow
,”
ASME J. Heat Mass Transfer-Trans. ASME
, 83(3), pp.
307
318
.10.1115/1.3682268
45.
Colebrook
,
C. F.
,
Blench
,
T.
,
Chatley
,
H.
,
Essex
,
E. H.
,
Finniecome
,
J. R.
,
Lacey
,
G.
,
Williamson
,
J.
, and
Macdonald
,
G. G.
,
1939
, “
Correspondence Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws (Includes Plates)
,”
J. Inst. Civ. Eng.
,
12
(
8
), pp.
393
422
.10.1680/ijoti.1939.14509
46.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
47.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
48.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.