Abstract

The radial outflow liquid turbine expander (LTEROF) draws increasing attention for enhancing the efficiency of the liquid CO2 energy storage (LCES) system. However, the detrimental cavitation deteriorates the flow behavior, which demands an in-depth study of the flow physics and then effective attenuation. This study aims to effectively mitigate thermosensitive fluid cavitation and reduce energy dissipation. First, a preliminary expander design methodology taking into account the large specific volume variation of working fluid is implemented. Next, the entropy production analysis method (EPAM) is proposed to characterize energy dissipation and cavitation. Furthermore, the improved cavitation and turbulence models are validated through simulating Hord's liquid hydrogen hydrofoil. To suppress the cavitation and energy dissipation, the optimization design method based on the particle swarm optimization (PSO) algorithm together with the Kriging-based adaptive surrogate model is developed. Among them, the nonuniform relational B-splines and free form deformation (NURBS-FFD) method is applied to flexibly deform the profiles of nozzle and rotor, and a novel objective function incorporating vapor volume fraction and local entropy production rate (LEPR) is constructed to capture the cavitation and energy dissipation. During optimization, the optimizer is driven by the objective function to search globally toward the cavitation-resistance and low-dissipation geometry. With the optimization, the LEPR region shrinks and the cavitation is obviously weakened, the performance significantly improves both under design condition and under off-design conditions.

References

1.
Huo
,
C. J.
,
Sun
,
J. J.
, and
Song
,
P.
,
2023
, “
Energy, Exergy and Economic Analyses of an Optimal Use of Cryogenic Liquid Turbine Expander in Air Separation Units
,”
Chem. Eng. Res. Des.
,
189
, pp.
194
209
.10.1016/j.cherd.2022.11.030
2.
Guo
,
H.
,
Xu
,
Y.
,
Chen
,
H.
, and
Zhou
,
X.
,
2016
, “
Thermodynamic Characteristics of a Novel Supercritical Compressed Air Energy Storage System
,”
Energy Convers. Manage.
,
115
, pp.
167
177
.10.1016/j.enconman.2016.01.051
3.
Luo
,
X.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn., Ser. B
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
4.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
,
2007
, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
871
876
.10.1115/1.2745838
5.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.10.1115/1.1457453
6.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
7.
Kumar
,
P.
, and
Saini
,
R.
,
2010
, “
Study of Cavitation in Hydro Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
374
383
.10.1016/j.rser.2009.07.024
8.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens, II-Hydrofoil
,”
NASA
,
Washington
, DC, Report No. CR-2156.
9.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens, III-Ogives
,”
NASA
,
Washington
, DC, Report No. CR-2242.
10.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
11.
Zhu
,
J.
,
Chen
,
Y.
,
Zhao
,
D.
, and
Zhang
,
X.
,
2015
, “
Extension of the Schnerr-Sauer Model for Cryogenic Cavitation
,”
Eur. J. Mech. B/Fluids
,
52
, pp.
1
10
.10.1016/j.euromechflu.2015.01.008
12.
Zhu
,
J.
,
Zhao
,
D.
,
Xu
,
L.
, and
Zhang
,
X.
,
2016
, “
Interactions of Vortices, Thermal Effects and Cavitation in Liquid Hydrogen Cavitating Flows
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
614
631
.10.1016/j.ijhydene.2015.10.042
13.
Franc
,
J. P.
, and
Christian
,
P.
,
2007
, “
Analysis of Thermal Effects in a Cavitating Inducer Using Rayleigh Equation
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
974
983
.10.1115/1.2746919
14.
Zhang
,
S.
,
Li
,
X.
, and
Zhu
,
Z.
,
2018
, “
Numerical Simulation of Cryogenic Cavitating Flow by an Extended Transport-Based Cavitation Model With Thermal Effects
,”
Cryogenics
,
92
, pp.
98
104
.10.1016/j.cryogenics.2018.04.008
15.
Zhang
,
S.
,
Li
,
X.
,
Hu
,
B.
,
Liu
,
Y.
, and
Zhu
,
Z.
,
2019
, “
Numerical Investigation of Attached Cavitating Flow in Thermo-Sensitive Fluid With Special Emphasis on Thermal Effect and Shedding Dynamics
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
3170
3184
.10.1016/j.ijhydene.2018.11.224
16.
Le
,
A. D.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Numerical Simulation Study of Cavitation in Liquefied Hydrogen
,”
Cryogenics
,
101
, pp.
29
35
.10.1016/j.cryogenics.2019.04.010
17.
Le
,
A. D.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081102
.10.1115/1.4042257
18.
Johansen
,
S.
,
Wu
,
J.
, and
Shyy
,
W.
,
2004
, “
Filter-Based Unsteady RANS Computations
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
10
21
.10.1016/j.ijheatfluidflow.2003.10.005
19.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
20.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperatures With Special Emphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.10.1016/j.ijheatmasstransfer.2016.05.107
21.
Chen
,
T.
,
Chen
,
H.
,
Huang
,
B.
,
Liang
,
W.
,
Xiang
,
L.
, and
Wang
,
G.
,
2018
, “
Thermal Transition and Its Evaluation of Liquid Hydrogen Cavitating Flow in a Wide Range of Free-Stream Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1277
1289
.10.1016/j.ijheatmasstransfer.2018.06.096
22.
Casati
,
E.
,
Vitale
,
S.
,
Pini
,
M.
,
Persico
,
G.
, and
Colonna
,
P.
,
2014
, “
Centrifugal Turbines for Mini-Organic Rankine Cycle Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122607
.10.1115/1.4027904
23.
Song
,
Y.
,
Sun
,
X.
, and
Huang
,
D.
,
2017
, “
Preliminary Design and Performance Analysis of a Centrifugal Turbine for Organic Rankine Cycle (ORC) Applications
,”
Energy
,
140
, pp.
1239
1251
.10.1016/j.energy.2017.08.061
24.
Luo
,
D.
,
Tan
,
X.
, and
Huang
,
D.
,
2018
, “
Design and Performance Analysis of Three Stage Centrifugal Turbine
,”
Appl. Therm. Eng.
,
138
, pp.
740
749
.10.1016/j.applthermaleng.2017.12.044
25.
Wang
,
Y.
,
Tan
,
X.
,
Wang
,
N.
, and
Huang
,
D.
,
2018
, “
Aerodynamic Design and Numerical Study for Centrifugal Turbine With Different Shapes of Volutes
,”
Appl. Therm. Eng.
,
131
, pp.
472
485
.10.1016/j.applthermaleng.2017.11.097
26.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for Organic Rankine Cycle Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.10.1115/1.4023122
27.
Persico
,
G.
,
Pini
,
M.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2015
, “
Aerodynamics of Centrifugal Turbine Cascades
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112602
.10.1115/1.4030261
28.
Song
,
Y.
,
Tan
,
X.
, and
Huang
,
D.
,
2017
, “
Design and Research on Off-Design Characteristics of Centrifugal Turbine for ORC
,”
J. Eng. Thermophys.
,
38
(
8
), pp.
1665
1670
.10.1016/j.thermophyseng.2017.08.038
29.
Luo
,
D.
,
Liu
,
Y.
,
Sun
,
X.
, and
Huang
,
D.
,
2017
, “
The Design and Analysis of Supercritical Carbon Dioxide Centrifugal Turbine
,”
Appl. Therm. Eng.
,
127
, pp.
527
535
.10.1016/j.applthermaleng.2017.08.039
30.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
(
1
), pp.
175
191
.10.1016/j.enconman.2017.07.024
31.
Ghorani
,
M. M.
,
Haghighi
,
M. H.
,
Maleki
,
A.
, and
Riasi
,
A.
,
2020
, “
A Numerical Study on Mechanisms of Energy Dissipation in a Pump as Turbine (PAT) Using Entropy Generation Theory
,”
Renewable Energy
,
162
, pp.
1036
1053
.10.1016/j.renene.2020.08.102
32.
Yu
,
Z. F.
,
Wang
,
W. Q.
,
Yan
,
Y.
, and
Liu
,
X. S.
,
2021
, “
Energy Loss Evaluation in a Francis Turbine Under Overall Operating Conditions Using Entropy Production Method
,”
Renewable Energy
,
169
, pp.
982
999
.10.1016/j.renene.2021.01.054
33.
Bilicki
,
Z.
,
Giot
,
M.
, and
Kwidzinski
,
R.
,
2002
, “
Fundamentals of Two-Phase Flow by the Method of Irreversible Thermodynamics
,”
Int. J. Multiphase Flow
,
28
(
12
), pp.
1983
2005
.10.1016/S0301-9322(02)00107-6
34.
Yu
,
A.
,
Tang
,
Q.
, and
Zhou
,
D.
,
2020
, “
Entropy Production Analysis in Thermodynamic Cavitating Flow With the Consideration of Local Compressibility
,”
Int. J. Heat Mass Transfer
,
153
, p.
119604
.10.1016/j.ijheatmasstransfer.2020.119604
35.
Wang
,
C.
,
Zhang
,
Y.
,
Hou
,
H.
,
Zhang
,
J.
, and
Xu
,
C.
,
2019
, “
Entropy Production Diagnostic Analysis of Energy Consumption for Cavitation Flow in a Two-Stage LNG Cryogenic Submerged Pump
,”
Int. J. Heat Mass Transfer
,
129
, pp.
342
356
.10.1016/j.ijheatmasstransfer.2018.09.070
36.
Song
,
P.
,
Sun
,
J.
, and
Huo
,
C.
,
2020
, “
Cavitating Flow Suppression for a Two-Phase Liquefied Natural Gas Expander Through Collaborative Fine-Turning Design Optimization of Impeller and Exducer Geometric Shape
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051401
.10.1115/1.4045713
37.
Song
,
P.
,
Sun
,
J.
, and
Wang
,
K.
,
2015
, “
Swirling and Cavitating Flow Suppression in a Cryogenic Liquid Turbine Expander Through Geometric Optimization
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
6
), pp.
628
646
.10.1177/0957650915589062
38.
Liu
,
Z.
,
Liu
,
X.
,
Zhang
,
W.
,
Yang
,
S.
,
Li
,
H.
, and
Yang
,
X.
,
2022
, “
Thermodynamic Analysis on the Feasibility of a Liquid Energy Storage System Using CO2-Based Mixture as the Working Fluid
,”
Energy
,
238
, p.
121759
.10.1016/j.energy.2021.121759
39.
Yang
,
Z.
,
Luo
,
D.
, and
Huang
,
D.
,
2019
, “
Research on a Transonic Supercritical Carbon Dioxide Centrifugal Turbine
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
041202
.10.1115/1.4043295
40.
Franc
,
J. P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
41.
Kelly
,
S.
,
Segal
,
C.
, and
Peugeot
,
J.
,
2011
, “
Simulation of Cryogenics Cavitation
,”
AIAA J.
,
49
(
11
), pp.
2502
2510
.10.2514/1.J051033
42.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
43.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
44.
Sun
,
S.
,
Sun
,
J.
,
Sun
,
W.
, and
Song
,
P.
,
2021
, “
Enhancing Cryogenic Cavitation Prediction Through Incorporating Modified Cavitation and Turbulence Models
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
0614004
.
45.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three-Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
46.
Long
,
X.
,
Liu
,
Q.
,
Ji
,
B.
, and
Lu
,
Y.
,
2017
, “
Numerical Investigation of Two Typical Cavitation Shedding Dynamics Flow in Liquid Hydrogen With Thermodynamic Effects
,”
Int. J. Heat Mass Transfer
,
109
, pp.
879
893
.10.1016/j.ijheatmasstransfer.2017.02.063
47.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
48.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
49.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
New York
.
50.
Zhao
,
Z.
,
Fu
,
Y.
,
Liu
,
X.
,
Xu
,
J.
,
Wang
,
J.
, and
Mao
,
S.
,
2017
, “
Measurement Based Geometric Reconstruction for Milling Turbine Blade Using Free-Form Deformation
,”
Measurement
,
101
, pp.
19
27
.10.1016/j.measurement.2017.01.009
You do not currently have access to this content.