Abstract

This study performs an investigation of the effects of the subgrid-scale (SGS) and droplet injection models in the large eddy simulation (LES) of turbulent two-phase spray flows. Three LES SGS models (Smagorinsky, wall-adapting local eddy viscosity (WALE), and dynamic Smagorinsky) and two droplet injection models (cone nozzle injection and conditional droplet injection) are validated to the experimental measurements. For both gaseous and liquid phases, all SGS models provide comparable results, indicating that the current two-phase flow field does not exhibit a pronounced sensitivity to the LES SGS model. As for different droplet injection models and spray dispersion angles, minimal differences are observed in the prediction of the gaseous mean and root‐mean-square (RMS) velocity profiles. However, for the result of liquid phase, CDIM (conditional droplet injection model) predictions of the droplet mean diameter and velocity are in better agreement with experiments, and less sensitive to spray dispersion angle settings. While the CNIM (cone nozzle injection model) prediction of droplet diameter is less accurate when increasing the dispersion angle. The study suggests that turbulent two-phase spray flows are more influenced by the spray boundary conditions rather than the LES SGS models.

References

1.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.10.1016/j.combustflame.2013.07.016
2.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
3.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp. 183–200.10.1023/A:1009995426001
4.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
5.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
6.
Lee
,
C. Y.
, and
Cant
,
S.
,
2017
, “
Assessment of Les Subgrid-Scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
155
176
.10.1007/s10494-016-9751-4
7.
Kakka
,
P.
, and
Anupindi
,
K.
,
2020
, “
Assessment of Subgrid-Scale Models for Large-Eddy Simulation of a Planar Turbulent Wall-Jet With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
153
, p.
119593
.10.1016/j.ijheatmasstransfer.2020.119593
8.
Ekman
,
P.
,
Venning
,
J.
,
Virdung
,
T.
, and
Karlsson
,
M.
,
2021
, “
Importance of Sub-Grid Scale Modeling for Accurate Aerodynamic Simulations
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011501
.10.1115/1.4048351
9.
Kamin
,
M.
, and
Khare
,
P.
,
2022
, “
The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061108
.10.1115/1.4053552
10.
Ma
,
L.
, and
Roekaerts
,
D.
,
2016
, “
Modeling of Spray Jet Flame Under Mild Condition With Non-Adiabatic FGM and a New Conditional Droplet Injection Model
,”
Combust. Flame
,
165
, pp.
402
423
.10.1016/j.combustflame.2015.12.025
11.
Yi
,
R.
, and
Chen
,
C. P.
,
2023
, “
Spray Flamelet Modeling of Turbulent Two-Phase Reacting Flows With Multi-Component Fuel in a Lean Direct Injection Combustor
,”
Combust. Sci. Technol.
, pp.
1
43
.10.1080/00102202.2023.2212319
12.
Puggelli
,
S.
,
Paccati
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
,
Giusti
,
A.
, and
Andreini
,
A.
,
2018
, “
Multi-Coupled Numerical Simulations of the DLR Generic Single Sector Combustor
,”
Combust. Sci. Technol.
,
190
(
8
), pp.
1409
1425
.10.1080/00102202.2018.1452124
13.
Verdier
,
A.
,
Marrero Santiago
,
J.
,
Vandel
,
A.
,
Saengkaew
,
S.
,
Cabot
,
G.
,
Grehan
,
G.
, and
Renou
,
B.
,
2017
, “
Experimental Study of Local Flame Structures and Fuel Droplet Properties of a Spray Jet Flame
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2595
2602
.10.1016/j.proci.2016.07.016
14.
Alessandro
,
D.
,
Stankovic
,
I.
, and
Merci
,
B.
,
2019
, “
Les Study of a Turbulent Spray Jet: Mesh Sensitivity, Mesh-Parcels Interaction and Injection Methodology
,”
Flow, Turbul. Combust.
,
103
(
2
), pp.
537
564
.10.1007/s10494-019-00039-7
15.
Lysenko
,
D. A.
,
Ertesvåg
,
I. S.
, and
Rian
,
K. E.
,
2012
, “
Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the Openfoam Toolbox
,”
Flow, Turbul. Combust.
,
89
(
4
), pp.
491
518
.10.1007/s10494-012-9405-0
16.
ANSYS Inc.
,
2019
, ANSYS Fluent Theory Guide,
Ansys Inc.
, Canonsburg, PA.https://www.scribd.com/document/668106063/ANSYS-Fluent-Theory-Guide-2019-R1
17.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
18.
Passalacqua
,
A.
,
2021
, “
Albertopa/Dynamicsmagorinsky: Dynamicsmagorinsky for Openfoam 2.3.x, Apr
,” accessed Nov. 29, 2023, https://doi.org/10.5281/zenodo.4697995
19.
De Santis
,
A.
,
Clements
,
A. G.
,
Pranzitelli
,
A.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2020
, “
Assessment of the Impact of Subgrid-Scale Stress Models and Mesh Resolution on the Les of a Partially-Premixed Swirling Flame
,”
Fuel
,
281
, p.
118620
.10.1016/j.fuel.2020.118620
20.
Kazemi
,
E.
, and
Heinz
,
S.
,
2016
, “
Dynamic Large Eddy Simulations of the Ekman Layer Based on Stochastic Analysis
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
77
98
.10.1515/ijnsns-2015-0049
21.
Mokhtarpoor
,
R.
, and
Heinz
,
S.
,
2017
, “
Dynamic Large Eddy Simulation: Stability Via Realizability
,”
Phys. Fluids
,
29
(
10
), p.
105104
.10.1063/1.4986890
22.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
The Particle-Source-in Cell (PSI-CELL) Model for Gas-Droplet Flows
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
325
332
.10.1115/1.3448756
23.
Schiller
,
L.
,
1933
, “
A Drag Coefficient Correlation
,”
Zeit. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.https://typeset.io/papers/a-drag-coefficientcorrelation-3iszrzuf39
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
, Vol.
413
,
John Wiley & Sons
,
New York
.10.1002/aic.690070245
25.
Hubbard
,
G. L.
,
Denny
,
V. E.
, and
Mills
,
A. F.
,
1975
, “
Droplet Evaporation: Effects of Transients and Variable Properties
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1003
1008
.10.1016/0017-9310(75)90217-3
26.
Roy
,
S. P.
,
Cai
,
J.
, and
Modest
,
M. F.
,
2017
, “
Development of a Multiphase Photon Monte Carlo Method for Spray Combustion and Its Application in High-Pressure Conditions
,”
Int. J. Heat Mass Transfer
,
115
, pp.
453
466
.10.1016/j.ijheatmasstransfer.2017.07.046
27.
Li
,
X-G.
, and
Fritsching
,
U.
,
2017
, “
Process Modeling Pressure-Swirl-Gas-Atomization for Metal Powder Production
,”
J. Mater. Process. Technol.
,
239
, pp.
1
17
.10.1016/j.jmatprotec.2016.08.009
28.
Verdier
,
A.
,
Marrero Santiago
,
J.
,
Vandel
,
A.
,
Godard
,
G.
,
Cabot
,
G.
, and
Renou
,
B.
,
2018
, “
Local Extinction Mechanisms Analysis of Spray Jet Flame Using High Speed Diagnostics
,”
Combust. Flame
,
193
, pp.
440
452
.10.1016/j.combustflame.2018.03.032
29.
Ma
,
L.
, and
Roekaerts
,
D.
,
2016
, “
Structure of Spray in Hot-Diluted Coflow Flames Under Different Coflow Conditions: A Numerical Study
,”
Combust. Flame
,
172
, pp.
20
37
.10.1016/j.combustflame.2016.06.017
30.
Both
,
A.
,
2017
, “
RANS-FGM Simulation of n-Heptane Spray Flame in Openfoam: A New Implementation of Flamelet Generated Manifold to Account for Enthalpy Loss With Detailed Reaction Mechanisms
,” M.S. thesis,
TU Delft
,
Delft, The Netherlands
.
31.
Kong
,
F.
,
Li
,
T.
,
Cheng
,
C.
,
Shan
,
C.
, and
Xu
,
B.
,
2022
, “
Modeling of Spray Flame in Gas Turbine Combustors With LES and FGM
,”
Fuel
,
325
, p.
124756
.10.1016/j.fuel.2022.124756
32.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
35
35
.10.1088/1367-2630/6/1/035
33.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
34.
Benajes
,
J.
,
García-Oliver
,
J. M.
,
Pastor
,
J. M.
,
Olmeda
,
I.
,
Both
,
A.
, and
Mira
,
D.
,
2022
, “
Analysis of Local Extinction of a n-Heptane Spray Flame Using Large-Eddy Simulation With Tabulated Chemistry
,”
Combust. Flame
,
235
, p.
111730
.10.1016/j.combustflame.2021.111730
35.
Sitte
,
M. P.
, and
Mastorakos
,
E.
,
2019
, “
Large Eddy Simulation of a Spray Jet Flame Using Doubly Conditional Moment Closure
,”
Combust. Flame
,
199
, pp.
309
323
.10.1016/j.combustflame.2018.08.026
36.
Noh
,
D.
,
Gallot-Lavallée
,
S.
,
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2018
, “
Comparison of Droplet Evaporation Models for a Turbulent, Non-Swirling Jet Flame With a Polydisperse Droplet Distribution
,”
Combust. Flame
,
194
, pp.
135
151
.10.1016/j.combustflame.2018.04.018
You do not currently have access to this content.