Abstract

Recently, cryogenic fluids are widely transported via cargo ships as energy sources. The generation of boil-off gas (BOG) is inevitable in a cryogenic container due to the large temperature difference. Therefore, accurately analyzing the boil-off gas over time is essential to increase delivery efficiency and ensure tank safety. However, predicting the boil-off rate (BOR) is not a simple task, as both experiment and calculation require a significant amount of time. In this study, a simple predictive method is developed for simulating a 1/50 scaled model tank. The method consists of steady and quasi-unsteady calculations. Steady calculations are performed to establish a correlation between LN2 level and inner-wall temperature. Quasi-unsteady calculations simulate BOG over time by changing the inner-wall boundary conditions. This method can help engineers effectively evaluate the insulation performance of a cryogenic container in a short time and provide guidelines for simulating a real scale tank.

References

1.
Rhee
,
S. H.
,
2005
, “
Unstructured Grid Based Reynolds-Averaged Navier–Stokes Method for Liquid Tank Sloshing
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
572
582
.10.1115/1.1906267
2.
Kargbo
,
O.
,
Xue
,
M. A.
, and
Zheng
,
J.
,
2021
, “
Multiphase Fluid Dynamics in Storage Tanks of Varying Geometry
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011405
.10.1115/1.4048786
3.
Perez
,
F.
,
Al Ghafri
,
S. Z.
,
Gallagher
,
L.
,
Siahvashi
,
A.
,
Ryu
,
Y.
,
Kim
,
S.
,
Kim
,
S. G.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2021
, “
Measurements of Boil-Off Gas and Stratification in Cryogenic Liquid Nitrogen With Implications for the Storage and Transport of Liquefied Natural Gas
,”
Energy
,
222
, p.
119853
.10.1016/j.energy.2021.119853
4.
Lee
,
J. H.
,
Kim
,
K. K.
,
Ro
,
S. T.
,
Chung
,
H. S.
, and
Kim
,
S. G.
,
2003
, “
A Study on the Thermal Analysis of Spray Cooling for the Membrane Type LNGC During the Cool-Down Period
,”
Trans. Korean Soc. Mech. Eng. B
,
27
(
1
), pp.
125
134
.10.3795/KSME-B.2003.27.1.125
5.
Heo
,
J. U.
,
Lee
,
Y. J.
,
Cho
,
J. R.
,
Ha
,
M. K.
, and
Lee
,
J. N.
,
2003
, “
Heat Transfer Analysis and BOG Estimation of Membrane-Type LNG Cargo During Laden Voyage
,”
Trans. Korean Soc. Mech. Eng. A
,
27
(
3
), pp.
393
400
.10.3795/KSME-A.2003.27.3.393
6.
Miana
,
M.
,
Legorburo
,
R.
,
Díez
,
D.
, and
Hwang
,
Y. H.
,
2016
, “
Calculation of Boil-Off Rate of Liquefied Natural Gas in Mark III Tanks of Ship Carriers by Numerical Analysis
,”
Appl. Therm. Eng.
,
93
, pp.
279
296
.10.1016/j.applthermaleng.2015.09.112
7.
Jeong
,
H.
, and
Shim
,
W. J.
,
2017
, “
Calculation of Boil-Off Gas (BOG) Generation of KC-1 Membrane LNG Tank With High Density Rigid Polyurethane Foam by Numerical Analysis
,”
Pol. Maritime Res.
,
24
(
1
), pp.
100
114
.10.1515/pomr-2017-0012
8.
Saleem
,
A.
,
Farooq
,
S.
,
Karimi
,
I. A.
, and
Banerjee
,
R.
,
2018
, “
A CFD Simulation Study of Boiling Mechanism and BOG Generation in a Full-Scale LNG Storage Tank
,”
Comput. Chem. Eng.
,
115
, pp.
112
120
.10.1016/j.compchemeng.2018.04.003
9.
Wu
,
S.
,
Ju
,
Y.
,
Lin
,
J.
, and
Fu
,
Y.
,
2020
, “
Numerical Simulation and Experiment Verification of the Static Boil-Off Rate and Temperature Field for a New Independent Type B Liquefied Natural Gas Ship Mock Up Tank
,”
Appl. Therm. Eng.
,
173
, p.
115265
.10.1016/j.applthermaleng.2020.115265
10.
Jeon
,
G. M.
,
Park
,
J. C.
, and
Choi
,
S.
,
2021
, “
Multiphase-Thermal Simulation on BOG/Bor Estimation Due to Phase Change in Cryogenic Liquid Storage Tanks
,”
Appl. Therm. Eng.
,
184
, p.
116264
.10.1016/j.applthermaleng.2020.116264
11.
Li
,
Z. Q.
,
Wang
,
X. J.
, and
Yang
,
S. S.
,
2022
, “
Predicting BOG Rate in Cryogenic Containers at Different Liquid Levels Based on a Single Test
,”
J. Mech. Sci. Technol.
,
36
(
9
), pp.
4809
4814
.10.1007/s12206-022-0839-6
12.
You
,
H.
,
Kim
,
T.
,
Kim
,
C.
,
Kim
,
M.
,
Kim
,
M.
,
Han
,
Y. S.
,
Nguyen
,
L. D.
,
Chung
,
K.
,
Choi
,
B. I.
, and
Do
,
K. H.
,
2023
, “
Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model
,”
J. Soc. Nav. Archit. Korea
,
60
(
4
), pp.
222
230
.10.3744/SNAK.2023.60.4.222
13.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
,
1977
, “
Thermophysical Properties of Selected Aerospace Materials
,” Part 2. Thermophysical Properties of Seven Materials,
CINDAS
,
Purdue University
, West Lafayette, IN, p.
0246
.https://apps.dtic.mil/sti/pdfs/ADA129295.pdf
14.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology. Standard Reference Data Program
,
Gaithersburg, MD
.
15.
Span
,
R.
,
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Wagner
,
W.
, and
Yokozeki
,
A.
,
2000
, “
A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures From 63.151 to 1000 K and Pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
6
), pp.
1361
1433
.10.1063/1.1349047
16.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
, Hoboken, NJ.10.1002/9781118671627
17.
ANSYS
,
2022
,
ANSYS Fluent Theory Guide, Release 2022 R1
,
Ansys
,
Canonsburg, PA
.
You do not currently have access to this content.