Abstract
Analysis on eddy motion is the essential method for understanding viscous flows. Compared with the current methods to identify the vortex, the study presents a method to investigate vortex structures based on topological analysis and nonlinear dynamics, and establishes a connection between the direction of the vortex and the real eigenvalue of the velocity gradient tensor. The study highlights the significance of the real and imaginary parts of complex eigenvalues in vortex development, wherein the real part indicates topological stability and the imaginary part represents swirling strength, contributing to get the characters of the viscous flows.
Issue Section:
Special Papers
Figure 2 Spatial coordinate systems for vortex
Issue Section:
Special Papers
References
1.
Davidson
,
P. A.
,
Kaneda
,
Y.
,
Moffatt
,
K.
, and
Sreenivasan
,
K. R.
, 2011
, A Voyage Through Turbulence
,
Cambridge University Press
, Cambridge, UK.2.
Holmes
,
P.
, 1996
, Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.3.
Drazin
,
P. G.
, 2002
, Introduction to Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.4.
Richardson
,
L. F.
, 1923
, Weather Prediction by Numerical Process
,
Cambridge University Press
,
Cambridge, UK
.5.
Liu
,
C.
,
Xu
,
H.
,
Cai
,
X.
, and
Gao
,
Y.
, 2021
, “
Liutex and Third Generation of Vortex Identification Methods
,” Liutex and Its Applications in Turbulence Research
, Springer, Singapore.6.
Liu
,
C.
,
Gao
,
Y.-S.
,
Dong
,
X.-R.
,
Wang
,
Y.-Q.
,
Liu
,
J.-M.
,
Zhang
,
Y.-N.
,
Cai
,
X.-S.
, and
Gui
,
N.
, 2019
, “
Third Generation of Vortex Identification Methods: Omega and Liutex/Rortex Based Systems
,” J. Hydrodyn. B
,
31
(2
), pp. 205
–223
.10.1007/s42241-019-0022-47.
Meneveau
,
C.
, 2011
, “
Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows
,” Annu. Rev. Fluid Mech.
,
43
(1
), pp. 219
–245
.10.1146/annurev-fluid-122109-1607088.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
, Stanford, CA, pp. 193
–208
.https://ntrs.nasa.gov/api/citations/19890015184/downloads/19890015184.pdf9.
Perry
,
A.
, and
Chong
,
M.
, 1987
, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,” Annu. Rev. Fluid Mech.
,
19
(1
), pp. 125
–155
.10.1146/annurev.fl.19.010187.00101310.
Jeong
,
J. J. J.
, and
Hussain
,
F.
, 1995
, “
On the Identification of a Vortex
,” J. Fluid Mech.
,
285
, pp. 69
–94
.10.1017/S002211209500046211.
Zhou
,
J.
,
Balachandar
,
S.
,
Kendall
,
T. M.
, and
Adrian
,
R. J.
, 1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,” J. Fluid Mech.
,
387
, pp. 353
–396
.10.1017/S002211209900467X12.
Liu
,
J. M.
,
Gao
,
Y. S.
,
Wang
,
Y. Q.
, and
Liu
,
C.
, 2019
, “
Objective Omega Vortex Identification Method
,” J. Hydrodyn.
,
31
(3
), pp. 455
–463
.10.1007/s42241-019-0028-y13.
Chihiro
,
M.
, and
Katsunobu
,
N.
, 2023
, “
Nonlinear Interaction of Two Non-Uniform Vortex Sheets and Large Vorticity Amplification in Richtmyer– Meshkov Instability
,” Phys. Plasmas
,
30
(6
), p. 062304
.10.1063/5.014635114.
Hunt
,
J. C. R.
, 1987
, “
Vorticity and Vortex Dynamics in Complex Turbulent Flows
,” Trans. Can. Soc. Mech. Eng.
,
11
(1
), pp. 21
–35
.10.1139/tcsme-1987-000415.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
, 1990
, “
A General Classification of Three-Dimensional Flow Fields
,” Phys. Fluids A
,
2
(5
), pp. 765
–777
.10.1063/1.85773016.
Sujudi
,
D.
, and
Haimes
,
R.
, 1995
, “
Identification of Swirling Flow in 3-D Vector Fields
,” 12th Computational Fluid Dynamics Conference
, San Diego, CA, June 19–22, p. 792
.10.2514/6.1995-171517.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
, 2006
, Vorticity and Vortex Dynamics
,
Springer
,
Berlin Heidelberg, New York
.18.
Zdravkovich
,
M. M.
, and
Bearman
,
P. W.
, 1998
, “
Flow Around Circular Cylinders—Volume 1: Fundamentals
,” ASME J. Fluids Eng.
,
120
(1
), pp. 216
–216
.10.1115/1.281965519.
Graham
,
J. M. R.
, 2004
, “
Flow Around Circular Cylinders. Vol. 2: Applications
,” J. Fluids Struct.
,
18
(1
), p. 146
.10.1016/s0889-9746(03)00088-420.
Suman
,
S.
, and
Girimaji
,
S. S.
, 2010
, “
Velocity Gradient Invariants and Local Flow-Field Topology in Compressible Turbulence
,” J. Turbul.
,
11
, p. N2
.10.1080/1468524100360475121.
Strogatz
,
S. H.
, 2018
, Nonlinear Dynamics and Chaos With Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering
,
CRC Press
,
Ithaca, New York
.22.
Wang
,
T.
, 2017
, “
Dynamic Mode Decomposition on LES Result of Cylinder Cascade Wake
,” Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer
, Niagara Falls, ON, Canada, Aug. 21–23, pp. 7
–9
.10.11159/ffhmt17.188Copyright © 2024 by ASME
You do not currently have access to this content.