Abstract

Analysis on eddy motion is the essential method for understanding viscous flows. Compared with the current methods to identify the vortex, the study presents a method to investigate vortex structures based on topological analysis and nonlinear dynamics, and establishes a connection between the direction of the vortex and the real eigenvalue of the velocity gradient tensor. The study highlights the significance of the real and imaginary parts of complex eigenvalues in vortex development, wherein the real part indicates topological stability and the imaginary part represents swirling strength, contributing to get the characters of the viscous flows.

Figure 2 Spatial coordinate systems for vortex

Figure 2 Spatial coordinate systems for vortex

Close modal

References

1.
Davidson
,
P. A.
,
Kaneda
,
Y.
,
Moffatt
,
K.
, and
Sreenivasan
,
K. R.
,
2011
,
A Voyage Through Turbulence
,
Cambridge University Press
, Cambridge, UK.
2.
Holmes
,
P.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
3.
Drazin
,
P. G.
,
2002
,
Introduction to Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
4.
Richardson
,
L. F.
,
1923
,
Weather Prediction by Numerical Process
,
Cambridge University Press
,
Cambridge, UK
.
5.
Liu
,
C.
,
Xu
,
H.
,
Cai
,
X.
, and
Gao
,
Y.
,
2021
, “
Liutex and Third Generation of Vortex Identification Methods
,”
Liutex and Its Applications in Turbulence Research
, Springer, Singapore.
6.
Liu
,
C.
,
Gao
,
Y.-S.
,
Dong
,
X.-R.
,
Wang
,
Y.-Q.
,
Liu
,
J.-M.
,
Zhang
,
Y.-N.
,
Cai
,
X.-S.
, and
Gui
,
N.
,
2019
, “
Third Generation of Vortex Identification Methods: Omega and Liutex/Rortex Based Systems
,”
J. Hydrodyn. B
,
31
(
2
), pp.
205
223
.10.1007/s42241-019-0022-4
7.
Meneveau
,
C.
,
2011
, “
Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
219
245
.10.1146/annurev-fluid-122109-160708
8.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
, Stanford, CA, pp.
193
208
.https://ntrs.nasa.gov/api/citations/19890015184/downloads/19890015184.pdf
9.
Perry
,
A.
, and
Chong
,
M.
,
1987
, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
125
155
.10.1146/annurev.fl.19.010187.001013
10.
Jeong
,
J. J. J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
11.
Zhou
,
J.
,
Balachandar
,
S.
,
Kendall
,
T. M.
, and
Adrian
,
R. J.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
12.
Liu
,
J. M.
,
Gao
,
Y. S.
,
Wang
,
Y. Q.
, and
Liu
,
C.
,
2019
, “
Objective Omega Vortex Identification Method
,”
J. Hydrodyn.
,
31
(
3
), pp.
455
463
.10.1007/s42241-019-0028-y
13.
Chihiro
,
M.
, and
Katsunobu
,
N.
,
2023
, “
Nonlinear Interaction of Two Non-Uniform Vortex Sheets and Large Vorticity Amplification in Richtmyer– Meshkov Instability
,”
Phys. Plasmas
,
30
(
6
), p.
062304
.10.1063/5.0146351
14.
Hunt
,
J. C. R.
,
1987
, “
Vorticity and Vortex Dynamics in Complex Turbulent Flows
,”
Trans. Can. Soc. Mech. Eng.
,
11
(
1
), pp.
21
35
.10.1139/tcsme-1987-0004
15.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
,
2
(
5
), pp.
765
777
.10.1063/1.857730
16.
Sujudi
,
D.
, and
Haimes
,
R.
,
1995
, “
Identification of Swirling Flow in 3-D Vector Fields
,”
12th Computational Fluid Dynamics Conference
, San Diego, CA, June 19–22, p.
792
.10.2514/6.1995-1715
17.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin Heidelberg, New York
.
18.
Zdravkovich
,
M. M.
, and
Bearman
,
P. W.
,
1998
, “
Flow Around Circular Cylinders—Volume 1: Fundamentals
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
216
216
.10.1115/1.2819655
19.
Graham
,
J. M. R.
,
2004
, “
Flow Around Circular Cylinders. Vol. 2: Applications
,”
J. Fluids Struct.
,
18
(
1
), p.
146
.10.1016/s0889-9746(03)00088-4
20.
Suman
,
S.
, and
Girimaji
,
S. S.
,
2010
, “
Velocity Gradient Invariants and Local Flow-Field Topology in Compressible Turbulence
,”
J. Turbul.
,
11
, p.
N2
.10.1080/14685241003604751
21.
Strogatz
,
S. H.
,
2018
,
Nonlinear Dynamics and Chaos With Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering
,
CRC Press
,
Ithaca, New York
.
22.
Wang
,
T.
,
2017
, “
Dynamic Mode Decomposition on LES Result of Cylinder Cascade Wake
,”
Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer
, Niagara Falls, ON, Canada, Aug. 21–23, pp.
7
9
.10.11159/ffhmt17.188
You do not currently have access to this content.