Abstract

The actuator-disk method is a cost-effective simulation tool that implicitly represents the rotor of a turbomachine using a blade-element approach combined with two-dimensional (2D) airfoil coefficient input data. Actuator-disk models further rely upon empirical coefficient corrections to modify the 2D input data to better mimic physical blade aerodynamic characteristics. However, the fabrication of high-fidelity, general-purpose corrections remains a formidable challenge, so the limits of actuator-disk model accuracy have never been rigorously tested and remain uncertain. This is especially the case for low-pressure axial flow fan models, given the relative lack of empirical corrections conceived specifically for fan rotor simulation. In this study, benchmark performance limits of the actuator-disk method for axial flow fan analysis are explored. The limits of the modeling approach are interrogated by simulating actuator-disk fan models embedded with accurate physical blade data derived from explicit three-dimensional (3D) fan model computations. It is subsequently shown that even with a near-precise coefficient description, the method remains unreliable. However, using an unconventional actuator-disk model formulation that is based directly on 3D blade force inputs, it is demonstrated that the accuracy of conventional models can be noticeably enhanced if the input coefficient data is artificially manipulated. This nonphysical tuning of the input coefficient data is required to compensate for the simplified flow fields produced by the reduced-order modeling approach. The needed coefficient adjustments, referred to as modeling corrections, are subsequently defined and explained alongside the presentation of new realistic performance targets for future actuator-disk fan model variants.

References

1.
Schneider
,
M. S.
,
Nitzsche
,
J.
, and
Hennings
,
H.
,
2016
, “
Accurate Load Prediction by BEM With Airfoil Data From 3D RANS Simulations
,”
J. Phys.: Conf. Ser.
,
753
, pp.
1
7
.10.1088/1742-6596/753/8/082016
2.
Engelbrecht
,
R.
,
Meyer
,
C. J.
, and
van der Spuy
,
S. J.
,
2019
, “
Modeling Strategy for the Analysis of Forced Draft Air-Cooled Condensers Using Rotational Fan Models
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051011
.10.1115/1.4042590
3.
Son
,
C.
, and
Kim
,
T.
,
2023
, “
Actuator Disk Model With Improved Tip Loss Correction for Hover and Forward Flight Rotor Analysis
,”
Aerospace
,
10
(
6
), p.
494
.10.3390/aerospace10060494
4.
Dominguez
,
F.
,
Achard
,
J. Z. J.
, and
Corre
,
C.
,
2015
, “
A BEM-RANS Approach for the Fast Power Output Prediction of Ducted Vertical-Axis Water Turbines
,”
Proceedings of 11th European Wave and Tidal Energy Conference
,
Nantes, France
,
Sept. 6–11, pp. 1–10
.10.13140/RG.2.1.4121.0081
5.
Meyer
,
C. J.
, and
Kröger
,
D. G.
,
2001
, “
Numerical Simulation of the Flow Field in the Vicinity of an Axial Flow Fan
,”
Num. Methods Fluids
,
36
(
8
), pp.
947
969
.10.1002/fld.161
6.
Martinez
,
L. A.
,
Leonardi
,
S.
,
Churchfield
,
M. J.
, and
Moriarty
,
P. J.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA
Paper No. 2012-0900.10.2514/6.2012-0900
7.
Snel
,
H.
,
Houwink
,
R.
,
Bosschers
,
J.
,
Piers
,
W. J.
,
Bussel
,
G. J. W.
, and
Bruining
,
A.
,
1993
, “
Sectional Prediction of 3-D Effects for Stalled Flow on Rotating Blades and Comparison With Measurements
,”
Proceedings of European Community Wing Energy Conference
,
Lübeck-Travemünde, Germany,
Mar. 08–12
.
8.
Louw
,
F. G.
,
von Backström
,
T. W.
, and
van der Spuy
,
S. J.
,
2015
, “
Lift and Drag Characteristics of an Air-Cooled Heat Exchanger Axial Flow Fan
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081101
.10.1115/1.4030165
9.
van der Spuy
,
S. J.
,
von Backström
,
T. W.
, and
Kruger
,
D. G.
,
2010
, “
An Evaluation of Simplified Methods to Model the Performance of Axial Flow Fan Arrays
,”
R&D J.
,
26
, pp.
12
20
.
10.
Breton
,
S. P.
,
Coton
,
F. N.
, and
Moe
,
G.
,
2008
, “
A Study on Rotational Effects and Different Stall Delay Models Using a Prescribed Wake Vortex Scheme and NREL Phase VI Experiment Data
,”
Wind Energy
,
11
(
5
), pp.
459
482
.10.1002/we.269
11.
Ouakki
,
Y.
, and
Arbaoui
,
A.
,
2022
, “
Verification, Calibration, and Validation of Stall Delay Models Using NREL Phase VI and Mexico Data
,”
J. Renew. Sust. Energy
,
15
(
1
), p.
013301
.10.1063/5.0104437
12.
Louw
,
F. G.
,
2015
, “
Investigation of the Flow Field in the Vicinity of an Axial Flow Fan During Low Flow Rates
,” Ph.D. thesis,
Stellenbosch University
,
Stellenbosch, South Africa
.
13.
Kabir
,
I. F. S. A.
,
Gajendran
,
M. G.
,
Ng
,
E. Y. K.
,
Mehdizadeh
,
A.
, and
Berrouk
,
A. S.
,
2022
, “
Novel Machine-Learning-Based Stall Delay Correction Model for Improving Blade Element Momentum Analysis in Wind Turbine Performance Prediction
,”
Wind
,
2
(
4
), pp.
636
658
.10.3390/wind2040034
14.
van der Spuy
,
S. J.
,
Le Roux
,
F. N.
,
von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2011
, “
The Simulation of an Axial Flow Fan Performance Curve at Low Flow Rates
,”
ASME
Paper No. GT2011-45709.10.1115/GT2011-45709
15.
ANSYS,
2022
,
ANSYS Fluent's User's Guide
,
ANSYS Inc
,
Canonsburg, PA
.
16.
Venter
,
A. J.
,
Owen
,
M. T. F.
, and
Muisyer
,
J.
,
2024
, “
The Effects of Rotation and Solidity on the Aerodynamic Behavior of Low-Pressure Axial Flow Fans
,”
ASME J. Fluids Eng.
,
146
(
5
), p.
051205
.10.1115/1.4064384
17.
Augustyn
,
P. H.
,
2013
, “
Experimental and Numerical Analysis of Axial Flow Fans
,” M.E. thesis,
Stellenbosch University
,
Stellenbosch, South Africa
.
18.
2007
,
International Organisation for Standardisation
., “
Fans – Performance Testing Using Standardized Airways
,” ISO Standard No. 5801:2017, 3rd ed.
19.
Menter
,
F. R.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of 4th International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17,
pp.
625
632
.
20.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992–0439.10.2514/6.1992-439
21.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
You do not currently have access to this content.