Abstract

This study assesses the accuracy of ansysfluent 19.2, a commonly employed general-purpose finite volume solver, in the context of wall-modeled large-eddy simulation for turbulent channel flow at a moderate Reynolds number, Reτ=2000. The sensitivity of the solution to variations in grid resolution, aspect ratio, grid arrangement (collocated versus staggered), and subgrid-scale (SGS) model is analyzed and contrasted to results from a corresponding direct numerical simulation (DNS) and a mixed pseudospectral and finite differences solver. Results indicate good convergence of first- and second-order statistics from the staggered grid setups as the grid is refined, whereas no clear trend is observed in cases with collocated grid setups. Velocity spectra show a lack of an apparent inertial range trend and rapid decay of energy density at high wavenumbers, with a spurious energy pile-up near the cutoff wavenumber indicating the presence of unphysical oscillations in the velocity fields. Grid refinement strengthens such oscillations in collocated grid setups and reduces them in staggered grid setups. Two-point streamwise velocity autocorrelation maps reveal an underprediction of turbulent structure size. In contrast, cross-stream autocorrelations agree with corresponding curves from direct numerical simulation, showing signatures of alternating high- and low-momentum streaks in the logarithmic layer.

References

1.
Stensrud
,
D. J.
,
2009
,
Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models
,
Cambridge University Press
, New York.
2.
Calaf
,
M.
,
Parlange
,
M. B.
, and
Meneveau
,
C.
,
2011
, “
Large Eddy Simulation Study of Scalar Transport in Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
23
, p.
126603
.10.1063/1.3663376
3.
Shah
,
K. B.
, and
Ferziger
,
J. H.
,
1997
, “
A Fluid Mechanicians View of Wind Engineering: Large Eddy Simulation of Flow Past a Cubic Obstacle
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
211
224
.10.1016/S0167-6105(97)00074-3
4.
Sagaut
,
P.
, and
Deck
,
S.
,
2009
, “
Large Eddy Simulation for Aerodynamics: Status and Perspectives
,”
Philos. Trans. R. Soc. A
,
367
(
1899
), pp.
2849
2860
.10.1098/rsta.2008.0269
5.
Deardorff
,
J. W.
,
1972
, “
Numerical Investigation of Neutral and Unstable Planetary Boundary Layers
,”
J. Atmos. Sci.
,
29
(
1
), pp.
91
115
.10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
6.
Moeng
,
C.-H.
,
1984
, “
A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence
,”
J. Atmos. Sci.
,
41
(
13
), pp.
2052
2062
.10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
7.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science & Business Media
, New York.
8.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.10.1146/annurev.fluid.34.082901.144919
9.
Piomelli
,
U.
,
2008
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
437
446
.10.1016/j.paerosci.2008.06.001
10.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
535
561
.10.1146/annurev-fluid-122316-045241
11.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
, pp.
353
385
.10.1017/S0022112096007379
12.
Albertson
,
J. D.
, and
Parlange
,
M. B.
,
1999
, “
Surface Length Scales and Shear Stress: Implications for Landatmosphere Interaction Over Complex Terrain
,”
Water Resour. Res.
,
35
(
7
), pp.
2121
2132
.10.1029/1999WR900094
13.
Porté-Agel
,
F.
,
Meneveau
,
C.
, and
Parlange
,
M. B.
,
2000
, “
A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
415
, pp.
261
284
.10.1017/S0022112000008776
14.
Bou-Zeid
,
E.
,
Meneveau
,
C.
, and
Parlange
,
M.
,
2005
, “
A Scale-Dependent Lagrangian Dynamic Model for Large Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
17
, p.
025105
.10.1063/1.1839152
15.
Giometto
,
M.
,
Christen
,
A.
,
Meneveau
,
C.
,
Fang
,
J.
,
Krafczyk
,
M.
, and
Parlange
,
M.
,
2016
, “
Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface
,”
Boundary-Layer Meteorol.
,
160
(
3
), pp.
425
452
.10.1007/s10546-016-0157-6
16.
Salesky
,
S. T.
, and
Anderson
,
W.
,
2018
, “
Buoyancy Effects on Large-Scale Motions in Convective Atmospheric Boundary Layers: Implications for Modulation of Near-Wall Processes
,”
J. Fluid Mech.
,
856
, pp.
135
168
.10.1017/jfm.2018.711
17.
Cheng
,
Y.
,
Giometto
,
M. G.
,
Kauffmann
,
P.
,
Lin
,
L.
,
Cao
,
C.
,
Zupnick
,
C.
, and
Li
,
H.
, et al.,
2022
, “
Deep Learning for Subgrid-Scale Turbulence Modeling in Large-Eddy Simulations of the Convective Atmospheric Boundary Layer
,”
J. Adv. Model. Earth Syst.
,
14
(
5
), p.
e2021MS002847
.10.1029/2021MS002847
18.
Momen
,
M.
,
Parlange
,
M. B.
, and
Giometto
,
M. G.
,
2021
, “
Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds
,”
Geophys. Res. Lett.
,
48
(
7
), p.
e2020GL091695
.10.1029/2020GL091695
19.
Calaf
,
M.
,
Vercauteren
,
N.
,
Katul
,
G. G.
,
Giometto
,
M. G.
,
Morrison
,
T. J.
,
Margairaz
,
F.
,
Boyko
,
V.
, and
Pardyjak
,
E. R.
,
2023
, “
Boundary-Layer Processes Hindering Contemporary Numerical Weather Prediction Models
,”
Boundary-Layer Meteorol.
,
186
(
1
), pp.
43
68
.10.1007/s10546-022-00742-5
20.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
21.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
22.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2007
,
Spectral Methods: Fundamentals in Single Domains
,
Springer Science & Business Media
, New York.
23.
Margairaz
,
F.
,
Giometto
,
M. G.
,
Parlange
,
M. B.
, and
Calaf
,
M.
,
2018
, “
Comparison of Dealiasing Schemes in Large-Eddy Simulation of Neutrally Stratified Atmospheric Flows
,”
Geosci. Model Dev.
,
11
(
10
), pp.
4069
4084
.10.5194/gmd-11-4069-2018
24.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer
, New York.
25.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics
, Vol.
113
,
Springer
, New York.
26.
Llaguno-Munitxa
,
M.
,
Bou-Zeid
,
E.
, and
Hultmark
,
M.
,
2017
, “
The Influence of Building Geometry on Street Canyon Air Flow: Validation of Large Eddy Simulations Against Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
165
, pp.
115
130
.10.1016/j.jweia.2017.03.007
27.
Wang
,
J.
,
Li
,
C.
,
Huang
,
S.
,
Zheng
,
Q.
,
Xiao
,
Y.
, and
Ou
,
J.
,
2023
, “
Large Eddy Simulation of Turbulent Atmospheric Boundary Layer Flow Based on a Synthetic Volume Forcing Method
,”
J. Wind Eng. Ind. Aerodyn.
,
233
, p.
105326
.10.1016/j.jweia.2023.105326
28.
Guichard
,
R.
,
2019
, “
Assessment of an Improved Random Flow Generation Method to Predict Unsteady Wind Pressures on an Isolated Building Using Large-Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
304
313
.10.1016/j.jweia.2019.04.006
29.
Liu
,
Z.
,
Ishihara
,
T.
,
Tanaka
,
T.
, and
He
,
X.
,
2016
, “
LES Study of Turbulent Flow Fields Over a Smooth 3-D Hill and a Smooth 2-D Ridge
,”
J. Wind Eng. Ind. Aerodyn.
,
153
, pp.
1
12
.10.1016/j.jweia.2016.03.001
30.
Vasaturo
,
R.
,
Kalkman
,
I.
,
Blocken
,
B.
, and
van Wesemael
,
P. J. V.
,
2018
, “
Large Eddy Simulation of the Neutral Atmospheric Boundary Layer: Performance Evaluation of Three Inflow Methods for Terrains With Different Roughness
,”
J. Wind Eng. Ind. Aerodyn.
,
173
, pp.
241
261
.10.1016/j.jweia.2017.11.025
31.
Yan
,
B. W.
, and
Li
,
Q. S.
,
2015
, “
Inflow Turbulence Generation Methods With Large Eddy Simulation for Wind Effects on Tall Buildings
,”
Comput. Fluids
,
116
, pp.
158
175
.10.1016/j.compfluid.2015.04.020
32.
Mo
,
J. O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
,
Kelso
,
R.
, and
Lee
,
Y. H.
,
2013
, “
Effects of Wind Speed Changes on Wake Instability of a Wind Turbine in a Virtual Wind Tunnel Using Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
117
, pp.
38
56
.10.1016/j.jweia.2013.03.007
33.
Gromke
,
C.
,
Buccolieri
,
R.
,
Di Sabatino
,
S.
, and
Ruck
,
B.
,
2008
, “
Dispersion Study in a Street Canyon With Tree Planting by Means of Wind Tunnel and Numerical Investigations—Evaluation of CFD Data With Experimental Data
,”
Atmos. Environ.
,
42
(
37
), pp.
8640
8650
.10.1016/j.atmosenv.2008.08.019
34.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,”
ANSYS Germany GmbH
, Otterfing, Germany, accessed Sept. 18, 2024, https://www.ansys.com/content/dam/product/fluids/cfd/tb-best-practices-scale-resolving-models.pdf
35.
Kravchenko
,
A.
, and
Moin
,
P.
,
1997
, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows
,”
J. Comput. Phys.
,
131
(
2
), pp.
310
322
.10.1006/jcph.1996.5597
36.
Lampitella
,
P.
,
Colombo
,
E.
, and
Inzoli
,
F.
,
2011
, “
Sensitivity Analysis on Numerical Parameters for Large Eddy Simulation With an Unstructured Finite Volume Commercial Code
,”
Proceedings of the XX AIMETA Conference
, Bologna, Italy, Sept. 12–15, pp.
1
10
.https://www.researchgate.net/profile/Fabio-Inzoli-2/publication/266234577_Sensitivity_Analysis_on_Numerical_Parameters_for_Large_Eddy_Simulation_with_an_Unstructured_Finite_Volume_Commercial_Code/links/555b33e308aeaaff3bfc4200/Sensitivity-Analysis-on-Numerical-Parameters-for-Large-Eddy-Simulation-with-an-Unstructured-Finite-Volume-Commercial-Code.pdf
37.
Rezaeiravesh
,
S.
,
Mukha
,
T.
, and
Liefvendahl
,
M.
,
2019
, “
Systematic Study of Accuracy of Wall-Modeled Large Eddy Simulation Using Uncertainty Quantification Techniques
,”
Comput. Fluids
,
185
, pp.
34
58
.10.1016/j.compfluid.2019.03.025
38.
Montecchia
,
M.
,
Brethouwer
,
G.
,
Wallin
,
S.
,
Johansson
,
A. V.
, and
Knacke
,
T.
,
2019
, “
Improving Les With Openfoam by Minimising Numerical Dissipation and Use of Explicit Algebraic SGS Stress Model
,”
J. Turbul.
,
20
(
11–12
), pp.
697
722
.10.1080/14685248.2019.1706740
39.
Giacomini
,
B.
, and
Giometto
,
M. G.
,
2020
, “
On the Suitability of General-Purpose Finite Volume-Based Solvers for the Simulation of Atmospheric-Boundary-Layer Flow
,”
Geosci. Model Dev. Discuss.
, 14(3), pp.
1
28
.10.5194/gmd-14-1409-2021
40.
Hinze
,
J.
,
1975
,
Turbulence
,
McGraw-Hill
, New York.
41.
Kim
,
W.-W.
,
Menon
,
S.
,
Kim
,
W.-W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
AIAA
Paper No. 97-0210.10.2514/6.97-0210
42.
Lozano-Durán
,
A.
, and
Jiménez
,
J.
,
2014
, “
Effect of the Computational Domain on Direct Simulations of Turbulent Channels Up to Reτ = 4200
,”
Phys. Fluids
,
26
, p.
011702
.10.1063/1.4862918
43.
ANSYS-Fluent
,
2018
,
Ansys Fluent Theory Guide 19.2
.
44.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
45.
Park
,
T. S.
,
2006
, “
Effects of Time-Integration Method in a Large-Eddy Simulation Using the PISO Algorithm: Part I: Flow Field
,”
Numer. Heat Transfer A-Appl.
,
50
(
3
), pp.
229
245
.10.1080/10407780600602374
46.
Pantano
,
C.
,
Pullin
,
D. I.
,
Dimotakis
,
P. E.
, and
Matheou
,
G.
,
2008
, “
LES Approach for High Reynolds Number Wall-Bounded Flows With Application to Turbulent Channel Flow
,”
J. Comput. Phys.
,
227
(
21
), pp.
9271
9291
.10.1016/j.jcp.2008.04.015
47.
Lee
,
J.
,
Cho
,
M.
, and
Choi
,
H.
,
2013
, “
Large Eddy Simulations of Turbulent Channel and Boundary Layer Flows at High Reynolds Number With Mean Wall Shear Stress Boundary Condition
,”
Phys. Fluids
,
25
, p.
110808
.10.1063/1.4819342
48.
Park
,
G. I.
, and
Moin
,
P.
,
2016
, “
Space-Time Characteristics of Wall-Pressure and Wall Shear-Stress Fluctuations in Wall-Modeled Large Eddy Simulation
,”
Phys. Rev. Fluids
,
1
(
2
), p.
024404
.10.1103/PhysRevFluids.1.024404
49.
Shah
,
S.
, and
Bou-Zeid
,
E.
,
2014
, “
Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition
,”
Boundary-Layer Meteorol.
,
153
(
3
), pp.
355
387
.10.1007/s10546-014-9950-2
50.
Fang
,
J.
, and
Porté-Agel
,
F.
,
2015
, “
Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer
,”
Boundary-Layer Meteorol.
,
155
(
3
), pp.
397
416
.10.1007/s10546-015-0006-z
51.
Jacob
,
C.
, and
Anderson
,
W.
,
2017
, “
Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes
,”
Boundary-Layer Meteorol.
,
162
(
1
), pp.
21
41
.10.1007/s10546-016-0183-4
52.
Hoyas
,
S.
, and
Jiménez
,
J.
,
2006
, “
Scaling of the Velocity Fluctuations in Turbulent Channels Up to Reτ = 2003
,”
Phys. Fluids
,
18
, p.
011702
.10.1063/1.2162185
53.
Sillero
,
J. A.
,
Jiménez
,
J.
, and
Moser
,
R. D.
,
2014
, “
Two-Point Statistics for Turbulent Boundary Layers and Channels at Reynolds Numbers Up to δ+ = 2000
,”
Phys. Fluids
,
26
, p.
105109
.10.1063/1.4899259
54.
Albertson
,
J. D.
, and
Parlange
,
M. B.
,
1999
, “
Natural Integration of Scalar Fluxes From Complex Terrain
,”
Adv. Water Resour.
,
23
(
3
), pp.
239
252
.10.1016/S0309-1708(99)00011-1
55.
Anderson
,
W.
,
Passalacqua
,
P.
,
Porté-Agel
,
F.
, and
Meneveau
,
C.
,
2012
, “
Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Over Fluvial-Like Landscapes Using a Dynamic Roughness Model
,”
Boundary-Layer Meteorol.
,
144
(
2
), pp.
263
286
.10.1007/s10546-012-9722-9
56.
Giometto
,
M. G.
,
Christen
,
A.
,
Egli
,
P. E.
,
Schmid
,
M.
,
Tooke
,
R.
,
Coops
,
N.
, and
Parlange
,
M. B.
,
2017
, “
Effects of Trees on Mean Wind, Turbulence and Momentum Exchange Within and Above a Real Urban Environment
,”
Adv. Water Resour.
,
106
, pp.
154
168
.10.1016/j.advwatres.2017.06.018
57.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
, and
T. A.
, Jr.
,
2012
,
Spectral Methods in Fluid Dynamics
,
Springer Science & Business Media
, New York.
58.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
(
2
), pp.
308
323
.10.1016/0021-9991(85)90148-2
59.
Li
,
Q.
,
Bou-Zeid
,
E.
,
Anderson
,
W.
,
Grimmond
,
S.
, and
Hultmark
,
M.
,
2016
, “
Quality and Reliability of LES of Convective Scalar Transfer at High Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
102
, pp.
959
970
.10.1016/j.ijheatmasstransfer.2016.06.093
60.
Nikitin
,
N.
,
Nicoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K.
, and
Spalart
,
P. R.
,
2000
, “
An Approach to Wall Modeling in Large-Eddy Simulations
,”
Phys. Fluids
,
12
(
7
), pp.
1629
1632
.10.1063/1.870414
61.
Larsson
,
J.
,
Kawai
,
S.
,
Bodart
,
J.
, and
Bermejo-Moreno
,
I.
,
2016
, “
Large Eddy Simulation With Modeled Wallstress: Recent Progress and Future Directions
,”
Mech. Eng. Rev.
,
3
(
1
), p.
15
00418
.10.1299/mer.15-00418
62.
Piomelli
,
U.
,
Ferziger
,
J.
,
Moin
,
P.
, and
Kim
,
J.
,
1989
, “
New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows
,”
Phys. Fluids A
,
1
(
6
), pp.
1061
1068
.10.1063/1.857397
63.
Kawai
,
S.
, and
Larsson
,
J.
,
2012
, “
Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy
,”
Phys. Fluids
,
24
, p.
015105
.10.1063/1.3678331
64.
Cabot
,
W.
, and
Moin
,
P.
,
2000
, “
Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow
,”
Flow, Turbul. Combust.
,
63
, pp.
269
291
.10.1023/A:1009958917113
65.
Nicoud
,
F.
,
Baggett
,
J.
,
Moin
,
P.
, and
Cabot
,
W.
,
2001
, “
Large Eddy Simulation Wall-Modeling Based on Suboptimal Control Theory and Linear Stochastic Estimation
,”
Phys. Fluids
,
13
(
10
), pp.
2968
2984
.10.1063/1.1389286
66.
Bae
,
H. J.
,
Lozano-Duran
,
A.
,
Bose
,
S.
, and
Moin
,
P.
,
2018
, “
Turbulence Intensities in Large-Eddy Simulation of Wall-Bounded Flows
,”
Phys. Rev. Fluids
,
3
(
1
), p.
014610
.10.1103/PhysRevFluids.3.014610
67.
Balakumar
,
B. J.
, and
Adrian
,
R. J.
,
2007
, “
Large and Very-Large-Scale Motions in Channel and Boundary-Layer Flows
,”
Philos. Trans. R. Soc. A
,
365
(
1852
), pp.
665
681
.10.1098/rsta.2006.1940
68.
Jiménez
,
J.
,
2013
, “
Near-Wall Turbulence
,”
Phys. Fluids
,
25
, p.
101302
.10.1063/1.4824988
69.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind-Biased Finite Difference Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
(
8
), pp.
1415
1417
.10.2514/2.253
70.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Phys.
,
143
(
1
), pp.
90
124
.10.1006/jcph.1998.5962
71.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
72.
Baggett
,
J. S.
,
1998
, “
On the Feasibility of Merging LES With RANS for the Near-Wall Region of Attached Turbulent Flows
,”
Center for Turbulence Research Annual Research Briefs
, pp.
267
277
.https://web.stanford.edu/group/ctr/ResBriefs98/baggett.pdf
73.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
You do not currently have access to this content.