This paper presents the application of a detailed combustion model for turbulent premixed combustion to a swirl-stabilized premix burner. Computations are carried out for atmospheric pressure and elevated pressure of 9 atm. Results of computations for atmospheric pressure are compared to experimental data. The combustion model is of the joint-pdf type. The model is based on the characteristics of turbulent combustion under conditions typical for gas turbine burners. It incorporates a systematically reduced six-step reaction mechanism yielding direct computation of radical concentrations via transport equations or steady-state assumptions. The model is able to simulate combustion of fuel gases containing methane, carbon monoxide, hydrogen, carbon dioxide, and water. It is therefore applicable to both methane and low-BTU fuel gas combustion. Based on computed radical concentrations, a post-processor for NOx formation is applied. This post-processor considers thermal formation of nitrogen oxides and NO formation via the nitrous oxide path.

1.
Zimont, V., Polifke, W., Bettelini, M., and Weisenstein, W., 1997, “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure,” ASME Paper 97-GT-395.
2.
Nicol, D. G., Malte, P. C., Hamer, A. J., Roby, R. J., and Steele, R. C., 1998, “Development of a Five-Step Global Methane Oxidation—NO Formation Mechanism for Lean Premixed Gas Turbine Combustion,” ASME Paper 98-GT-185.
3.
Hamer, A. J., Roby, R. J., and Klassen, M. S., 1998, “Comparison of Reduced Chemical Kinetic Mechanisms for Pollutant Emissions Predictions in Gas Turbines,” ASME IJPGC meeting, Baltimore, MD.
4.
Polifke, W., Do¨bbeling, K., Sattelmayer, T., Nicol, D. G, and Malte, P. C., 1995, “A NOx Prediction Scheme for Lean-Premixed Gas Turbine Combustion Based on Detailed Chemical Kinetics,” ASME Paper 95-GT-108.
5.
Polifke, W., Do¨bbeling, K., and Sattelmayer, T., 1995, “A Computational Model for Lean-Premixed, Highly Turbulent Combustion,” CIMAC 21st International Symposium on Combustion Engines, Interlaken, Switzerland.
6.
Peters, N., and Rogg, B., 1993, “Reduced Kinetic Mechanisms for Applications in Combustion Systems,” (Lecture Notes in Physics), Springer-Verlag, Berlin.
7.
Bohn, D., Kru¨ger, U., and Matouschek, G., 1995, “Numerical Simulation of Premixed Flame Combustion using Systematically Reduced Reaction Mechanisms,” International Gas Turbine Congress, Yokohama, JGTC-40, II, pp. 275–282.
8.
Bohn, D., and Matouschek, G., 1997, “Numerical Combustion Simulations and Pollutant Prediction of Low- to Medium-Btu Gases in Premixed Flames using Systematically Reduced Multi-Step Reaction Mechanisms,” 4th Int. Conf. on Technologies and Combustion for a Clean Environment, Lisbon, Portugal.
9.
Bohn, D., and Lepers, J., 1999, “Numerical Simulation of Turbulent Premixed Combustion Using a Joint-PDF Approach Based on a Systematically Reduced Multi-Step Reaction Mechanism,” ASME-Paper 99-GT-272.
10.
Libby, P. A., and Williams, F. A., eds., 1994, Turbulent Reacting Flows, Academic Press, London.
11.
Mu¨ller, U. C., 1989, “Der Einfluß von Strahlungsverlusten auf die thermische NO-Bildung in laminaren CH4-Diffusionsflammen,” Diplomarbeit, Institut fu¨r Technische Mechanik, Aachen University of Technology.
12.
Philipp, M., 1991, “Experimentelle und theoretische Untersuchungen zum Stabilita¨tsverhalten von Drallflammen mit zentraler Ru¨ckstro¨mzone,” Ph.D. thesis, University of Karlsruhe, Germany, (in German).
13.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1990, “The Chemkin Thermodynamic Data Base,” Sandia Report SAND87-8215B.
14.
Peters, N., 1992, “Fifteen Lectures on Laminar and Turbulent Combustion,” ERCOFTAC Summer School, Aachen, Germany.
15.
Nicol
,
D. G.
,
Steele
,
R. C.
,
Marinov
,
N. M.
, and
Malte
,
P. C.
,
1995
, “
The Importance of the Nitrous-Oxide Pathway to NOx in Lean-Premixed Combustion
,”
Trans. ASME
,
117
, pp.
100
111
.
16.
Steele, R. C., Jarrett, A. C., Malte, P. C., Tonouchi, J. H., and Nicol, D. G., 1997, “Variables Affecting NOx-Formation in Lean-Premixed Combustion,” ASME J. Eng. Gas Turbines Power, 119.
17.
Miller, J. A., and Bowman, C. T., 1989, “Mechanism and Modelling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci., 5.
18.
Go¨ttgens, J., 1995, “Berechnung einer laminaren Diffusionsflamme mit reduzierter chemischer Kinetik” Ph.D. thesis, Aachen University of Technology, (in German).
19.
van Doormal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
20.
Rhie, C. M., 1981, “A Numerical Study of the Flow Past an Isolated Airfoil With Separation,” Ph.D. thesis, University of Illinois at Urbana-Champaign.
21.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
, pp.
1527
1532
.
22.
Leuckel, W., Lauer, G., Hirsch, C., and Habisreuther, P., 1994, “Mathematische Modellierung der Wechselwirkung von Turbulenz und Reaktion unter den in Gasturbinenbrennkammern vorliegenden Bedingungen,” AG Turbo (German Research Cooperation on High Temperature Gas Turbines), Turboflam Vorhaben 3.1.3.4, Schlußbericht, (in German).
You do not currently have access to this content.