Flame flashback from the combustion chamber into the mixing zone limits the reliability of swirl stabilized lean premixed combustion in gas turbines. In a former study, the combustion induced vortex breakdown (CIVB) has been identified as a prevailing flashback mechanism of swirl burners. The present study has been performed to determine the flashback limits of a swirl burner with cylindrical premixing tube without centerbody at atmospheric conditions. The flashback limits, herein defined as the upstream flame propagation through the entire mixing tube, have been detected by a special optical flame sensor with a high temporal resolution. In order to study the effect of the relevant parameters on the flashback limits, the burning velocity of the fuel has been varied using four different natural gas-hydrogen-mixtures with a volume fraction of up to 60% hydrogen. A simple approach for the calculation of the laminar flame speeds of these mixtures is proposed which is used in the next step to correlate the experimental results. In the study, the preheat temperature of the fuel mixture was varied from 100°C to 450°C in order to investigate influence of the burning velocity as well as the density ratio over the flame front. Moreover, the mass flow rate has been modified in a wide range as an additional parameter of technical importance. It was found that the quenching of the chemical reaction is the governing factor for the flashback limit. A Peclet number model was successfully applied to correlate the flashback limits as a function of the mixing tube diameter, the flow rate and the laminar burning velocity. Using this model, a quench factor can be determined for the burner, which is a criterion for the flashback resistance of the swirler and which allows to calculate the flashback limit for all operating conditions on the basis of a limited number of flashback tests.

1.
Fritz, J., Kro¨ner, M., and Sattelmayer, T., 2001, “Flashback in a Swirl Burner With Cylindrical Premixing Zone,” ASME Paper No. 2001-GT-0054.
2.
McCormack
,
P. D.
,
Scheller
,
K.
,
Mueller
,
G.
, and
Tisher
,
R.
,
1972
, “
Flame Propagation in a Vortex Core
,”
Combust. Flame
,
19
, pp.
297
303
.
3.
Asato
,
K.
,
Wada
,
H.
,
Hiruma
,
T.
, and
Takeuchi
,
Y.
,
1997
, “
Characteristics of Flame Propagation in a Vortex Core: Validity of a Model for Flame Propagation
,”
Combust. Flame
,
110
, pp.
418
428
.
4.
Chomiak, J., 1997, “Dissipation Fluctuations and the Structure and Propagation of Turbulent Flames in Premixed Gases at High Reynolds Numbers,” 17th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1665–1673.
5.
Umemura
,
A.
, and
Tomita
,
K.
,
2001
, “
Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomena
,”
Combust. Flame
,
125
, pp.
820
838
.
6.
Ishizuka, S., Hamasaki, T., Koumura, K., and Hasegawa, R., 1998, “Measurements of Flame Speeds in Combustible Vortex Rings: Validity of the Back-Pressure Drive Flame Propagation Mechanism,” 27th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 727–734.
7.
Ashurst
,
W. M. T.
,
1996
, “
Flame Propagation Along a Vortex: The Baroclinic Push
,”
Combust. Sci. Technol.
,
112
, pp.
175
185
.
8.
Abdel-Gayed, R. G., Bradley, D., Hamid, M. N., and Lawes, M., 1984, “Lewis Number Effects on Turbulent Burning Velocity,” 20th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 505–512.
9.
Abdel-Gayed
,
R. G.
, and
Bradley
,
D.
,
1985
, “
Criteria for Turbulent Propagation Limits of Premixed Flames
,”
Combust. Flame
,
62
, pp.
61
68
.
10.
Abdel-Gayed
,
R. G.
,
Bradley
,
D.
, and
Lung
,
F. K. K.
,
1989
, “
Combustion Regimes and the Straining of Turbulent Premixed Flames, Short Communications
,”
Combust. Flame
,
76
, pp.
213
218
.
11.
Bradley, D., 1992, “How Fast Can We Burn?” 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 247–262.
12.
Putnam, A. A., and Jensen, R. A., 1948, “Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena,” 3rd International Symposium on Combustion, Flame and Explosion Phenomena, The Combustion Institute, Pittsburgh, PA, pp. 89–98.
13.
Kremer, H., Minx, E., and Rawe, R., 1976, “Flammenstabilita¨t bei Gasbrennern mit Gebla¨se,” Forschungsbericht des Landes Nordrhein-Westfalen, Nr. 2567/Fachgruppe Energie.
14.
Prade, B., and Lenze, B., 1992, “Experimental Investigation in Extinction of Turbulent Non-Premixed Disk Stabilized Flames,” 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 369–375.
15.
Turns, S. R., 2000, An Introduction to Combustion. 2nd Ed., Gordon and Breach, New York.
16.
Chomiak, J., 1990, Combustion—A Study in Theory, Fact and Application.
17.
Hoffmann, S., 1994, “Untersuchungen des Stabilisierungsverhaltens und der Stabilita¨tsgrenzen von Drallflammen mit innerer Ru¨ckstro¨mzone,” Ph.D. thesis, TH Karlsruhe.
18.
Hillemanns, R., 1988, “Das Stro¨mungs- und Reaktionsfeld sowie Stabilisierungseigenschaften von Drallflammen unter dem Einfluss der inneren Rezirkulationszone,” Ph.D. thesis, TH Karlsruhe.
19.
Hoffmann
,
S.
,
Habisreuther
,
P.
, and
Lenze
,
B.
,
1994
, “
Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames
,”
Chem. Process Eng. (London)
,
33
, pp.
393
400
.
20.
Hoffmann
,
S.
,
Lenze
,
B.
, and
Eickhoff
,
H.
,
1998
, “
Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
311
316
.
21.
Lewis, B., and von Elbe, G., 1987, Combustion Flames and Explosion of Gases, Third Ed.
22.
Nastoll, W., 1989, “Untersuchung zur instationa¨ren turbulenten Flammenausbreitung in geschlossenen Beha¨ltern,” Ph.D. thesis, TH Karlsruhe.
23.
Scholte
,
T. G.
, and
Vaags
,
P. B.
,
1959
, “
Burning Velocities of Mixtures of Hydrogen, Carbon Monoxide and Methane With Air
,”
Combust. Flame
,
3
, pp.
511
524
.
24.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
C. K.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon+Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
, pp.
339
347
.
25.
Koroll
,
G. W.
,
Kumar
,
R. K.
, and
Bowles
,
E. M.
,
1993
, “
Burning Velocities of Hydrogen-Air Mixtures
,”
Combust. Flame
,
94
, pp.
330
340
.
26.
Peters, N., 1994, “Turbulente Brenngeschwindigkeit,” Abschlussbericht zum Forschungsvorhaben Pe 241/9-2.
27.
Berman, M., 1984, Sandia Laboratories Report, SAND84-0689.
28.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
,
1990
, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Combust. Flame
,
pp.
325
332
.
29.
Liu, Y., 1991, “Untersuchung zur Stationa¨ren Ausbreitung turbulenter Vormischflammen,” Ph.D. thesis, TH Karlsruhe.
30.
Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A., and Meeks, E., 1992, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flame,” Sandia National Laboratories Report SAND85-8240.
31.
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., and Qin, Z., GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.
32.
Moser, V., 1997, “Simulation der Explosion Magerer Wasserstoff-Luft-Gemische in Großskaligen Geometrien,” Ph.D. thesis, RWTH Aachen.
You do not currently have access to this content.