An instrument for promoting CO2 emission reductions, taking the Kyoto Protocol goal into account, could be the assignment to energy conversion plants of a monetary charge linked to their specific emission intensity, usually called carbon tax. There are two main problems closely connected with this approach: the estimation of the charge (that must be related to the “external” cost associated with CO2 emission) and the choice of the strategy to determine the amount of the imposed charge. In this paper an analytical procedure proposed by the authors and called carbon exergy tax (CET) for the evaluation of CO2 emission externalities is presented. It is based on the thermoeconomic analysis of energy systems, which allows second law losses to be quantified in monetary terms: the resulting cost represents the taxation that is to be applied to the energy system under examination, calculated without any arbitrary assumption. Since the complete procedure of the CET evaluation is too complex to become a feasible instrument of energy policy, hereby, after applying the procedure to some conventional and advanced power plants, gas, oil, and coal-fueled, a new generalized approach, based on the results of the complete CET procedure, is proposed. The generalized CET evaluation requires much less information about the energy system and thus a simple and effective energy policy rule to manage global warming is obtained and available.

1.
OECD, 1994, “Managing the Environment: The Role of Economic Instruments,” Organization for Economic Cooperation and Development, Paris.
2.
Goodstein, E. S., 1999, Economics and the Environment, Prentice-Hall, Englewood Cliffs, NJ.
3.
Parkin, M., Powell, M., and Matthews, K., 1997, Economics, Addison-Wesley, Reading, MA.
4.
Borchiellini
,
R.
,
Massardo
,
A. F.
, and
Santarelli
,
M.
, 2000, “An Analytical Procedure for the Carbon Tax Evaluation,” Energy Convers. Manage., 41, Sept.
5.
Borchiellini
,
R.
,
Massardo
,
A. F.
, and
Santarelli
,
M.
,
2000
, “
A Carbon Tax Evaluation Based on the Efficient Use of Energy Resources
,”
Int. J. Appl. Thermodyn.
,
3
(
3
), pp.
129
145
.
6.
Santarelli, M., 1998, “Considerazioni Termodinamiche, Economiche ed Ambientali nella Analisi ed Ottimizzazione di Sistemi Energetici,” Ph.D. thesis, Dipartimento di Energetica, Politecnico di Torino, Torino, Italy.
7.
Santarelli, M., Borchiellini, R., and Massardo, A. F., 1999, “Environomic Optimization for Combined Plants Including CO2 Influence,” IGTI Turbo Ekpo ’99, Indianapolis, IN, June, ASME, New York.
8.
Santarelli, M., Traverso, A., Cali, M., and Massardo, A. F., 2001, “La Metodologia dell’Efficiency Penalty Quale Criterio Termoeconomico di Penalizzazione delle Emissioni di CO2,” X Convegno Tecnologie E Sistemi Energetici Complessi “Sergio Stecco,” Genova.
9.
Massardo, A. F., Santarelli, M., and Borchiellini, R., 2000, “Carbon Exergy Tax (CET): Impact on Conventional Energy Systems Design and Its Contribution to Advanced Systems Utilisation,” ECOS 2000, University of Twente, The Netherlands, July, ASME, New York.
10.
Langeland
,
K.
, and
Wilhelmsen
,
K.
, 1993, “A Study of the Costs and Energy Requirement for Carbon Dioxide Disposal,” Energy Convers. Manage., 34(9–11).
11.
Summerfield
,
I. R.
,
Goldthorpe
,
S. H.
,
Williams
,
N.
, and
Sheikh
,
A.
, 1993, “Costs of CO2 Disposal Options,” Energy Convers. Manage., 34(9–11).
12.
Schiappacasse, R., and Squeri, S., 1999, “CO2 Caption and Sequestration Study,” degree thesis, DIMSET, Universita` di Genova, Genova, Italy.
13.
Santarelli, M., Borchiellini, R., and Massardo, A. F., 1999, “Carbon Tax vs CO2 Sequestration Effects on Environomic Analysis of Existing Power Plants,” ECOS ’99, Tokyo, Japan, June, ASME, New York.
14.
Brandani, M., and Bozzolo, M., 2001, “Study of Power Plants With CO2 Sequestration Fed by Hydrogen From Fuel Decarbonisation,” degree thesis, DIMSET, Universita` di Genova, Genova, Italy.
15.
Agazzani
,
A.
, and
Massardo
,
A. F.
,
1997
, “
A Tool for Thermoeconomic Analysis and Optimization of Gas, Steam, and Combined Plants
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
885
892
.
16.
Agazzani
,
A.
,
Massardo
,
A. F.
, and
Frangopoulos
,
C. A.
,
1998
, “
Environmental Influence on the Thermoeconomic Optimization of a Combined Plant With NOx Abatement
,”
ASME J. Eng. Gas Turbines Power
,
120
, p.
557
557
.
17.
Massardo
,
A. F.
, and
Scialo`
,
M.
, 2000, “Thermoeconomic Analysis of Gas Turbine Based Cycle,” ASME J. Eng. Gas Turbines Power, 122.
18.
Traverso, A., 2000, “Thermoeconomic Analysis of STIG, RWI and HAT cycles With Carbon Dioxide CO2 Emissions Penalty,” degree thesis, DIMSET, Universita` di Genova, Genova, Italy.
19.
Traverso, A., and Massardo, A. F., 2001, “Thermoeconomic Analysis of Mixed Gas-Steam Cycles,” Applied Thermal Engineering, 22, Elsevier, New York, 1–21.
20.
Lozano
,
M.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy–Int. J.
,
18
, p.
939
939
.
21.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis,” ASME J. Eng. Gas Turbines Power, 122.
22.
Consonni, S., Macchi, E., and Farina, F., 1996, “Externally Fired Combined Cycles (EFCC). Part A/B,” ASME Paper Nos. 96-GT-92/93.
23.
Cohen, H., Rogers, G. F. C., and Saravanamuttoo H. I. H., 1996, Gas Turbine Theory, 4th Ed., Longman House, London.
24.
Ansaldo Ricerche (ARI), 2001, private communication, Genova, Italy.
25.
Rose´n, Per M., 2000, “Evaporative Cycles—In Theory and in Practise,” doctoral thesis, Lund Institute of Technology, Sweden.
26.
Magistri, L., Traverso, A., Scarpellini, R., and Zito, D., 2001, “Sviluppo di un Sistema a Combustione Esterna con Microturbina a Gas per la Generazione Distribuita,” Tecnologie e Sistemi Energetici Complessi “Sergio Stecco,” Genova.
27.
Bozzolo, M., Brandani, M., Massardo, A. F., and Traverso, A., “Thermoeconomic Analysis of a Gas Turbine Plant With Fuel Decarbonisation and CO2 Sequestration,” ASME Paper No. GT-2002-30120.
You do not currently have access to this content.