Trend shift detection is posed as a two-part problem: filtering of the gas turbine measurement deltas followed by the use of edge detection algorithms. Measurement deltas are deviations in engine gas path measurements from a “good” baseline engine and are a key health signal used for gas turbine performance diagnostics. The measurements used in this study are exhaust gas temperature, low rotor speed, high rotor speed and fuel flow, which are called cockpit measurements and are typically found on most commercial jet engines. In this study, a cascaded recursive median (RM) filter, of increasing order, is used for the purpose of noise reduction and outlier removal, and a hybrid edge detector that uses both gradient and Laplacian of the cascaded RM filtered signal are used for the detection of step change in the measurements. Simulated results with test signals indicate that cascaded RM filters can give a noise reduction of more than 38% while preserving the essential features of the signal. The cascaded RM filter also shows excellent robustness in dealing with outliers, which are quite often found in gas turbine data, and can cause spurious trend detections. Suitable thresholding of the gradient edge detector coupled with the use of the Laplacian edge detector for cross checking can reduce the system false alarms and missed detection rate. Further reduction in the trend shift detection false alarm and missed detection rate can be achieved by selecting gas path measurements with higher signal-to-noise ratios.

1.
Volponi, A., 1983, “Time-Dependent Failure Mechanisms and Assessment Methodologies,” Gas Path Analysis: An Approach to Engine Diagnostics, Cambridge University Press, Cambridge, UK.
2.
Volponi
,
A. J.
, and
Urban
,
L. A.
, 1992, “Mathematical Methods of Relative Engine Performance Diagnostics,” SAE Trans., 101, Technical Paper 922048.
3.
Luppold, R. H., Roman, J. R., Gallops, G. W., and Kerr, L. J., 1989, “Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts,” AIAA Paper 89-2584.
4.
Doel
,
D. L.
,
1994
, “
TEMPER-A Gas Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
82
89
.
5.
Doel
,
D. L.
,
2003
, “
Interpretation of Weighted Least Squares Gas Path Analysis Results
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
624
633
.
6.
Volponi
,
A. J.
,
Depold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
,
2003
, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
917
924
.
7.
DePold
,
H.
, and
Gass
,
F. D.
, 1999, “The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics,” ASME J. Eng. Gas Turbines Power, 121.
8.
Lu
,
P. J.
,
Hsu
,
T. C.
,
Zhang
,
M. C.
, and
Zhang
,
J.
,
2001
, “
An Evaluation of Engine Fault Diagnostics Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
240
246
.
9.
Lu
,
P. J.
, and
Hsu
,
T. C.
,
2002
, “
Application of Auto-Associative Neural Network on Gaspath Sensor Data Validation
,”
J. Propul. Power
,
18
(
4
), pp.
879
888
.
10.
Ganguli
,
R.
,
2002
, “
Fuzzy Logic Intelligent System for Gas Turbine Module and System Fault Isolation
,”
J. Propul. Power
,
18
, pp.
440
447
.
11.
Romessis, C., Stamatis, A., and Mathioudakis, A. K., 2001, “Setting up a Belief Network for Turbofan Diagnosis With the Aid of an Engine Performance Model,” ISABE Paper 1032.
12.
Ganguli
,
R.
,
2002
, “
Data Rectification and Detection of Trend Shifts in Jet Engine Gas Path Measurements Using Median Filters and Fuzzy Logic
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
809
817
.
13.
Ganguli
,
R.
,
2002
, “
Noise and Outlier Removal From Jet Engine Health Monitoring Signals Using Weighted FIR Median Hybrid Filters
,”
J. Mech. Sys. Signal Process.
,
16
(
6
), pp.
967
978
.
14.
Volponi
,
A. J.
,
1999
, “
Gas Turbine Parameter Corrections
,”
ASME J. Eng. Gas Turbines Power
,
121
, pp.
613
621
.
15.
Gonzales, R. C., and Woods, R. E., 2002, Digital Image Processing, Addison-Wesley, Reading, MA.
16.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
8
, pp.
679
698
.
17.
Marr
,
D.
, and
Hildreth
,
E.
,
1980
, “
Theory of Edge Detection
,”
Proc. R. Soc. London, Ser. B
,
B207
, pp.
187
217
.
18.
Chou, P. C., and Bennamoun, M., 2000, “Accurate Localization of Edges in Noisy Volume Images,” Proceedings of the IEEE International Conference on Pattern Recognition, IEEE Piscataway, NJ.
19.
Yin
,
L.
,
Yang
,
M.
,
Gabbouj
,
M.
, and
Neuvo
,
Y.
,
1996
, “
Weighted Median Filters: A Tutorial
,”
IEEE Trans. Circuits Syst.
,
40
(
1
), pp.
147
192
.
20.
Mao
,
M.
, and
Gan
,
Z. J.
,
1993
, “
Statistical Analysis for the Convergence Rate of Signals to Median Filter Roots
,”
IEEE Trans. Signal Process.
,
41
, pp.
2499
2502
.
21.
Senel
,
H. G.
,
Peters
, II,
A. R.
, and
Dawant
,
B.
,
2002
, “
Topological Median Filters
,”
IEEE Trans. Image Process.
,
11
(
2
), pp.
89
104
.
22.
Vardavoulia
,
M. I.
,
2001
, “
A New Vector Median Filter for Color Image Processing
,”
Pattern Recogn. Lett.
,
22
, pp.
675
689
.
23.
Arce
,
G.
, and
Gallagher
,
N. C.
,
1988
, “
Stochastic Analysis for the Recursive Median Filter Process
,”
IEEE Trans. Inf. Theory
,
34
, pp.
669
679
.
24.
Chen
,
T.
, and
Wu
,
H. R.
,
2001
, “
Recursive LMS L-Filters for Noise Removal in Images
,”
Signal Processing Letters
,
8
(
2
), pp.
36
38
.
25.
Shmulevich, I., and Coyle, E. J., 1997, “The Use of Recursive Median Filters for Establishing the Tonal Context of Music,” IEEE Workshop on Nonlinear Signal and Image Processing, MI.
26.
Bangham
,
J. A.
,
1993
, “
Properties of a Series of Nested Median Filters, Namely the Data Sieve
,”
IEEE Trans. Signal Process.
,
41
, pp.
31
42
.
27.
Fitch
,
J. P.
,
Coyle
,
E. J.
, and
Gallagher
,
N. C.
,
1984
, “
Median Filtering by Threshold Decomposition
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
32
, pp.
1184
1188
.
28.
Richards
,
S. D.
,
1990
, “
LSI Median Filters
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
38
, pp.
145
153
.
29.
Alliney
,
S.
,
1996
, “
Recursive Median Filters of Increasing Order: A Variational Approach
,”
IEEE Trans. Signal Process.
,
44
(
6
), pp.
1346
1354
.
30.
Bangham
,
J. A.
,
Ling
,
P.
, and
Young
,
R.
,
1996
, “
Multiscale Recursive Medians, Scale-Space and Transforms with Applications to Image Processing
,”
IEEE Trans. Image Process.
,
5
(
6
), pp.
1043
1048
.
31.
Yli-Harja, O., Bangham, J. A., Harvey, R., and Aldridge, R., 1999, “Correlation Properties of Cascaded Recursive Median Filters,” IEEE Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey, IEEE, Piscataway, NJ, pp. 491–495.
32.
Yli-Harja
,
O.
,
Koivisto
,
P.
,
Bangham
,
J. A.
,
Cawley
,
G.
,
Harvey
,
R.
, and
Schmulevich
,
I.
,
2001
, “
Simplified Implementation of the Recursive Median Sieve
,”
Signal Process.
,
81
, pp.
1565
1570
.
33.
Barnett, V., and Lewis, T., 1987, Outliers in Statistical Data, 2nd Ed., John Wiley and Sons, Norwich.
34.
Nounou
,
M. N.
, and
Bakshi
,
B. R.
,
1999
, “
On-Line Multiscale Filtering of Random and Gross Errors Without Process Models
,”
AIChE J.
,
45
(
5
), pp.
1041
1058
.
You do not currently have access to this content.