This study uses a multi-objective genetic algorithm to determine new reaction rate parameters (A’s, β’s and Ea’s in the non-Arrhenius expressions) for the combustion of a methane/air mixture. The multi-objective structure of the genetic algorithm employed allows for the incorporation of both perfectly stirred reactor and laminar premixed flame data in the inversion process, thus enabling a greater confidence in the predictive capabilities of the reaction mechanisms obtained. Various inversion procedures based on reduced sets of data are investigated and tested on methane/air combustion in order to generate efficient inversion schemes for future investigations concerning complex hydrocarbon fuels. The inversion algorithms developed are first tested on numerically simulated data. In addition, the increased flexibility offered by this novel multi-objective GA has now, for the first time, allowed experimental data to be incorporated into our reaction mechanism development. A GA optimized methane-air reaction mechanism is presented which offers a remarkable improvement over a previously validated starting mechanism in modeling the flame structure in a stoichiometric methane-air premixed flame (http://www.personal.leeds.ac.uk/∼fuensm/project/mech.html). In addition, the mechanism outperforms the predictions of more detailed schemes and is still capable of modeling combustion phenomena that were not part of the optimization process. Therefore, the results of this study demonstrate that the genetic algorithm inversion process promises the ability to assess combustion behavior for fuels where the reaction rate coefficients are not known with any confidence and, subsequently, accurately predict emission characteristics, stable species concentrations and flame characterization. Such predictive capabilities will be of paramount importance within the gas turbine industry.

1.
Bowman, C. T., Hanson, R. K., Gardiner, W. C., Lissianski, V., Frenklach, M., Goldenberg, M., and Smith, G. P., 1997, “GRI/MECH 2.11. An Optimised Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning,” GRI Technical Report 97/0020.
2.
Dixon-Lewis
,
G.
,
Goldsworthy
,
F. A.
, and
Greenberg
,
J. B.
,
1975
, “
Flame Structure and Flame Reaction Kinetics. IX: Calculation of Properties of Multi-Radical Premixed Flames
,”
Proc. R. Soc. London, Ser. A
,
346
, pp.
261
275
.
3.
Dagaut
,
P.
,
Reuillon
,
M.
,
Boetner
,
J.-C.
, and
Cathonnet
,
M.
,
1994
, “
Kerosene Combustion at Pressures up to 40 atm: Experimental Study and Detailed Chemical Kinetic Modelling
,”
Proceedings of the Combustion Institute
,
25
, pp.
919
926
.
4.
Rabitz
,
H.
,
Kramer
,
M.
, and
Dacol
,
D.
,
1983
, “
Sensitivity Analysis in Chemical Kinetics
,”
Annu. Rev. Phys. Chem.
,
34
, pp.
419
430
.
5.
Milstein, J., 1981, “The Inverse Problem: Estimation of Kinetic Parameters,” Modelling of Chemical Reaction Systems, K. H. Ezbert, P. Deuflhard, and W. Jager, eds., Springer, Berlin.
6.
Bock, H. G., 1981, “Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics,” Modelling of Chemical Reaction Systems, K. H. Ezbert, P. Deuflhard, and W. Jager, eds., Springer, Berlin.
7.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method—Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
, pp.
47
73
.
8.
Michalewicz, Z., 1996, Genetic Algorithms/Data Structures/Evolution Programs, 3rd Ed., Springer, Berlin.
9.
Harris
,
S. D.
,
Elliott
,
L.
,
Ingham
,
D. B.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
,
2000
, “
The Optimisation of Reaction Rate Parameters for Chemical Kinetic Modelling of Combustion Using Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
1065
1090
.
10.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
,
2002
, “
Incorporation of Physical Bounds on Rate Parameters for Reaction Mechanism Optimisation Using Genetic Algorithms
,” Combust. Sci. Technol., in press.
11.
Elliott, L., Ingham, D. B., Kyne, A. G., Mera, N. S., Pourkashanian, M., and Wilson, C. W., 2002, “The Optimisation of Reaction Rate Parameters for Chemical Kinetic Modelling Using Genetic Algorithms,” ASME Paper No. GT-2002-30092.
12.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
,
2002
, “
Multi-Objective Genetic Algorithms Optimization for Calculating the Reaction Rate Coefficients for Hydrogen Combustion
,” Ind. Eng. Chem. Res., in press.
13.
Glarborg, P., Kee, R. J., Grcar, J. F., and Miller, J. A., 1988, “PSR: A FORTRAN Program for Modelling Well-Stirred Reactors,” Sandia National Laboratories Report No. SAND86-8209.
14.
Kee, R. J., Grcar, J. F., Smooke, M. D., and Miller, J. A., 1985, “A Fortran Program for Modelling Steady One-Dimensional Premixed Flames,” Sandia Report No. SAND85-8240.
15.
Kee, R. J., Miller, J. A., and Jefferson, T. H., 1980, “CHEMKIN: A General-Purpose, Problem-Independent, Transport Table, FORTRAN Chemical Kinetics Code Package,” Sandia Report No. SAND80-8003.
16.
Van Velhuizen
,
D.
, and
Lamont
,
G.
,
2000
, “
Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art
,”
Evol. Comput.
,
8
(
2
), pp.
125
147
.
17.
Lutz, A. E., Kee, R. J., and Miller, J. A., 1987, “SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis,” Sandia Report No. SAND87-8248.
18.
Bernstein
,
J. S.
,
Fein
,
A.
,
Choi
,
J. B.
,
Cool
,
T. A.
,
Sausa
,
R. C.
,
Howard
,
S. L.
,
Locke
,
R. J.
, and
Miziolek
,
A. W.
,
1993
, “
Laser-Based Flame Species Profile Measurements—A Comparison With Flame Model Predictions
,”
Combust. Flame
,
92
, pp.
85
105
.
19.
Vagelopoulos, C. M., Egolfopoulos, F. N., and Law, C. K., 1994, “Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique,” Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1341–1347.
20.
Taylor, S. C., 1991, “Burning Velocity and the Influence of Flame Stretch,” Ph.D. thesis, University of Leeds.
21.
Tsuboi, T., and Wagner, H. G., 1974, “Homogeneous Thermal Oxidation of Methane in Reflected Shock Waves,” Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 883–890.
You do not currently have access to this content.