The detailed design of a turbo generator rotor system is highly constrained by feasible regions for the damped natural frequencies of the system. A major problem for the designer is to find a solution that fulfills the design criterion for the damped natural frequencies. The bearings and some geometrical variables of the rotor are used as the primary design variables in order to achieve a feasible design. This paper presents an alternative approach to search for feasible designs. The design problem is formulated as an optimization problem and a genetic algorithm (GA) is used to search for feasible designs. Then, the problem is extended to include another objective (i.e., multiobjective optimization) to show the potential of using the optimization formulation and a Pareto-based GA in this rotordynamic application. The results show that the presented approach is promising as an engineering design tool.

1.
Andersson, J., 2001, “Multiobjective Optimization in Engineering Design,” Ph.D. thesis No. 675, Linko¨ping University, Linko¨ping.
2.
Chen
,
T. Y.
, and
Wang
,
B. P.
,
1993
, “
Optimum Design of Rotor-Bearing Systems With Eigenvalue Constraits
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
256
260
.
3.
Lee
,
D. S.
, and
Choi
,
D. H.
,
2000
, “
Reduced Weight Design of a Flexible Rotor With Ball Bearing Stiffness Characteristics Varying With Rotational Speed and Load
,”
ASME J. Vibr. Acoust.
,
122
, pp.
203
208
.
4.
Shiau
,
T. N.
, and
Chang
,
J. R.
,
1993
, “
Multi-Objective Optimization of Rotor-Bearing System With Critical Speed Constraits
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
246
255
.
5.
Shiau, T. N., Kuo, C. P., and Hwang, J. R., 1994, “Multiobjective Optimization of a Flexible Rotor in Magnetic Bearings With Critical Speeds and Control Current Constraints,” Proc. of the International Gas Turbine Aeroengine Congress and Exposition, ASME, New York, pp. 1–13.
6.
Choi
,
B. K.
, and
Yang
,
B. S.
,
2000
, “
Optimum Shape Design of Rotor Shafts Using Genetic Algorithm
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
6
, pp.
207
222
.
7.
Choi
,
B. K.
, and
Yang
,
B. S.
,
2001
, “
Multiobjective Optimum Design of Rotor-Bearing Systems With Dynamic Constraints Using Immune-Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
78
81
.
8.
Choi
,
B. K.
, and
Yang
,
B. S.
,
2001
, “
Optimal Design of Rotor-Bearing Systems Using Immune-Genetic Algorithm
,”
ASME J. Vibr. Acoust.
,
123
, pp.
398
401
.
9.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.
10.
Gen, M., and Cheng, R., 2000, Genetic Algorithms & Engineering Optimization, John Wiley and Sons, New York.
11.
Andersson, J., 2000, “A Survey of Multiobjective Optimization in Engineering Design,” Technical Report No. LiTH-IKP-R-1097, Linko¨ping University, Linko¨ping.
12.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1995
, “
An Overview of Evolutionary Algorithms in Multiobjective Optimization
,”
Evol. Comput.
,
3
, pp.
1
18
.
13.
Gen, M., and Cheng, R., 1996, “A Survey of Penalty Techniques in Genetic Algorithms,” Proc. of the IEEE International Conference on Evolutionary Computation, IEEE, Piscataway, NJ, pp. 804–809.
14.
Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M., 1989, “Some Guidelines for Genetic Algorithms With Penalty Functions,” Proc. of the 3rd International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco, pp. 191–197.
15.
Coello Coello, Carlos A., 1999, “A Survey of Constraint Handling Techniques Used With Evolutionary Algorithms,” Technical Report Lania-RI-99-04, Laboratorio Nacional de Informa´tica Avanzada, Xalapa.
16.
Michalewicz, Z., 1995, “A Survey of Constraint Handling Techniques in Evolutionary Computation Methods,” Proc. of the 4th Annual Conference on Evolutionary Programming, MIT Press, Cambridge, MA, pp. 135–155.
17.
Fonseca, C. M., and Fleming, P. J., 1995, “Multiobjective Optimization and Multiple Constraint Handling With Evolutionary Algorithms I: A Unified Formulation,” Research Report 564, University of Sheffield, Sheffield, UK.
18.
Rajan
,
M.
,
Rajan
,
S. D.
,
Nelson
,
H. D.
, and
Chen
,
W. J.
,
1987
, “
Optimal Placement of Critical Speeds in Rotor-Bearing Systems
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
109
, pp.
152
157
.
19.
Lund
,
J. W.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
J. Eng. Ind.
,
96
, pp.
509
517
.
20.
Mu¨hlenbein
,
H.
, and
Schlierkamp-Voosen
,
D.
,
1993
, “
Predictive Models for the Breeder Genetic Algorithm: I. Continuous Parameter Optimization
,”
Evol. Comput.
,
1
, pp.
25
49
.
21.
Pohlheim, H., 1998, “Development and Engineering Application of Evolutionary Algorithms,” Ph.D. Thesis, Technical University Ilmenau, Ilmenau.
22.
Deb, K., 2002, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley and Sons, London.
23.
Fonseca, C. M., and Fleming, P. J., 1993, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” Proc. of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco, pp. 416–423.
You do not currently have access to this content.