This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel types. This approach combines the potential advantages of a staged rich-burn, quick-mix, lean-burn (RQL) combustor with the revolutionary trapped vortex combustor (TVC) concept. Although RQL combustors have been proposed for low-Btu fuels, this paper considers the application of an RQL combustor for high-Btu natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atm (1013 kPa or 147 psia) and an inlet-air temperature of 644 K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts per million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions; however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.

1.
U.S. Department Of Energy’s Vision 21 Program Plan, “Clean Energy Plants For the 21st Century,” http://www.netl.doe.gov/
2.
National Energy Policy, “Reliable, Affordable, and Environmentally Sound Energy for America’s Future,” Report of the National Energy Policy Development Group, May 2001.
3.
Hsu, K. Y., Goss, L. P., and Roquemore, W. M., 1995, “Performance of a Trapped Vortex Combustor,” 33rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1995, AIAA Paper 95-0810.
4.
Katta
,
V. R.
, and
Roquemore
,
W. M.
,
1998
, “
Numerical Studies on Trapped Vortex Concepts for Stable Combustion
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
60
68
.
5.
Dobbeling
,
K.
,
Koppel
,
H. P.
,
Polifke
,
W.
,
Winkler
,
D.
,
Steinbach
,
C.
, and
Sattelmayer
,
T.
,
1996
, “
Low-NOx Premixed Combustion of MBtu Fuels Using the ABB Double Cone Burner (EV Burner)
,”
ASME J. Eng. Gas Turbines Power
,
118
, pp.
46
53
.
6.
Dobbeling
,
K.
,
Eroglu
,
A.
,
Winkler
,
D.
,
Sattelmayer
,
T.
, and
Keppel
,
W.
,
1997
, “
Low NOx Premixed Combustion of MBtu Fuels in a Research Burner
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
553
558
.
7.
Todd, D. M., 2000, “Gas Turbine Improvements Enhance IGCC Viability,” Presented at the 2000 Gasification Technologies Conference, San Francisco, CA, October 8–11, 2000.
8.
Folsom
,
B. A.
,
Courtney
,
C. W.
, and
Heap
,
M. P.
,
1980
, “
The Effects of LBG Composition and Combustor Characteristics on Fuel NOx Formation
,”
ASME J. Eng. Power
102
, pp.
459
467
.
9.
Domeracki
,
W. F.
,
Dowdy
,
T. E.
, and
Bachovchin
,
D. M.
,
1997
, “
Topping Combustor Status for Second-Generation Pressurized Fluidized Bed Cycle Application
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
27
33
.
10.
Feitelberg, A. S., and Lacey, M. A., 1997, “The GE Rich-Quench-Lean Gas Turbine Combustor,” ASME Paper 97-GT-127.
11.
Sato, M., Ninomiya, T. N., Yoshine, T., and Yamada, S. H., 1990, “Coal Gaseous Fueled Low Fuel-NOx Gas Turbine Combustor,” ASME Paper 90-GT-381.
12.
Constant, D. R., Bevan, D. M., and Cannon, M. F., 1997, “Development of an LCV Fuel Gas Combustor For an Industrial Gas Turbine,” ASME Paper 97-GT-38.
13.
Hasegawa, T., Hisamatsu, T., Katsuki, Y., Sato, M., Yamada, M., Onoda, A., and Utsunomiya, M., 1998, “A Study of Low Nox Combustion In Medium-BTU Fueled 1300°C-Class Gas Turbine Combustor In IGCC,” ASME Paper 98-GT-331.
14.
Sarv
,
H.
, and
Cernansky
,
N. P.
,
1989
, “
NOx Formation From the Combustion of Monodisperse n-Heptane Sprays Doped With Fuel-Nitrogen Additives
,”
Combust. Flame
,
76
, pp.
265
283
.
15.
Hsu
,
K. Y.
,
Goss
,
L. P.
, and
Roquemore
,
W. M.
,
1998
, “
Characteristics of a Trapped Vortex Combustor
,”
J. Propul. Power
,
14
, pp.
57
65
.
16.
Hsu, K. Y., Carter, C. D., Katta, V. R., and Roquemore, W. M., 1999, “Characteristics of Combustion Instability Associated With Trapped Vortex Burner,” AIAA Paper 99-0488.
17.
Roquemore, W. M., Shouse, D. T., and Hsu, K. Y., 1999, U.S. Patent 5,857,339.
18.
Roquemore, W. M., Shouse, D., Burrus, D., Johnson, A., Cooper, C., Duncan, B., Hsu, K. Y., Katta, V. R., Sturgess, G. J., and Vihinen, I., 2001, “Trapped Vortex Combustor Concept For Gas Turbine Engines,” AIAA Paper 2001-0483.
19.
Little
, Jr.,
B. H.
, and
Whipkey
,
R. R.
,
1979
, “
Locked Vortex Afterbodies
,”
J. Aircr.
,
16
, pp.
296
302
.
20.
Burrus, D. L., Johnson, A. W., Roquemore, W. M., and Shouse, D. T., 2001, “Performance Assessment of a Prototype Trapped Vortex Combustor Concept For Gas Turbine Application,” ASME Paper 2001-GT-0087.
21.
Straub, D. L., Sidwell, T. G., Maloney, D. J., Casleton, K. H., Richards, G. A., Rogers, W. A., and Golden, G. M. 2000, “Simulations of a Rich Quench Lean (RQL) Trapped Vortex Combustor,” presented at the 2000 American Flame Research Committee (AFRC) International Symposium, Newport Beach, CA.
22.
Swithenbank, J., Poll, I., Vincent, M. W., and Wright, D. D., 1973, “Combustion Design Fundamentals,” Fourteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 627–638.
23.
Turns, S. R., 1996, An Introduction to Combustion—Concepts and Applications, McGraw-Hill, New York, p. 173.
24.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, “Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National Laboratory Report SAND89-8009.
25.
Glarborg, P., Kee, R. J., Grcar, J. F., and Miller, J. A., 1990, “PSR: A FORTRAN Program for Modeling Well-Stirred Reactors,” Sandia National Laboratory Report SAND86-8209.
26.
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., and Qin, Z., “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/
You do not currently have access to this content.