Many fuel injector geometries proposed for lean-premixed combustion systems involve the use of radial swirlers. At the high swirl numbers needed for flame stabilization, several complex unsteady fluid mechanical phenomena such as vortex breakdown and recirculation zone precession are possible. If these unsteady aerodynamic features are strongly periodic, unwanted combustion induced oscillation may result. The present paper reports on an isothermal experimental study of a radial swirler fed fuel injector originally designed by Turbomeca, and examines the dynamical behavior of the unsteady aerodynamic flow structures observed. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures both internal to the fuel injector, and externally in the main flame-stabilizing recirculation zone. Multiple vortex structures are observed. Vector field analysis is used to identify specific flow structures and perform both standard and conditional time averaging to reveal the modal characteristics of the structures. This allows analysis of the origin of high turbulence regions in the flow and links between internal fuel injector vortex breakdown and external unsteady flow behavior. The data provide a challenging test case for Large Eddy Simulation methods being developed for combustion system simulation.

1.
Merkle
,
K.
,
Buechner
,
H.
,
Zarzalis
,
N.
, and
Sara
,
O. N.
, 2003, “
Influence of Co and Counter Swirl on Lean Stability Limits of an Airblast Nozzle
,” ASME GT-2003-38004.
2.
Brooke-Benjamin
,
T.
, 1962, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
0022-1120,
14
, pp.
593
628
.
3.
Sarpkaya
,
T.
, 1971, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
0022-1120,
45
, pp.
545
559
.
4.
Billant
,
P.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
, 1998, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
0022-1120,
376
, pp.
183
219
.
5.
Li
,
G.
, and
Gutmark
,
E. J.
, 2003, “
Geometry Effects on the Flow Field and the Spectral Characteristics of a Triple Annular Swirler
,” ASME G-2003-38799.
6.
Broda
,
J. C.
,
Seo
,
S.
,
Santoro
,
R. J.
,
Shirhattikar
,
G.
, and
Yang
,
V.
, 1998, “
An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector
,”
27th Symposium Int. on Combustion, The Combustion Institute
, pp.
1849
1856
.
7.
Cohen
,
J. M.
,
Hibshman
,
J. R.
,
Proscia
,
W.
,
Rosfjord
,
T. J.
,
Wake
,
B. E.
,
McVey
,
J. B.
,
Lovett
,
J.
,
Ondas
,
M.
,
DeLaat
,
J.
, and
Breisacher
,
K.
, 2000, “
Longitudinal Mode Combustion Instabilities: Modelling and Measurements
,” NASA∕TM-2000-210067.
8.
Syred
,
N.
,
Fick
,
W.
,
O’Doherty
,
T.
, and
Griffiths
,
A. J.
, 1997, “
The Effect of the Precessing Vortex Core on Combustion in a Swirl Burner
,”
Combust. Sci. Technol.
0010-2202,
125
, pp.
139
157
.
9.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
, 2001, “
Characteristics of a Precessing Vortex Core in an LPP Combustor Model
,” in
Proc. of 2nd TSFP Symp.
,
Stockholm
, Sweden.
10.
Noll
,
B.
,
Schueltz
,
H.
, and
Aigner
,
M.
, 2001, “
Numerical Simulation of High Frequency Flow Instabilities Near an Airblast Atomizer
,” ASME 2001-GT-0041.
11.
Cannon
,
S. M.
,
Adumitroaie
,
V.
, and
Smith
,
C. E.
, “
3D LES Modelling of Combustion Dynamics in Lean Premixed Combustors
,” ASME 2001-GT-375.
12.
Tang
,
G.
,
Yang
,
Z.
, and
McGuirk
,
J. J.
, “
Large Eddy Simulation of Isothermal Confined Swirling Flow with Recirculation
,”
Proceedings of 5th International Symposium on Engine Turbine Models and Measurements
, pp.
885
894
.
13.
Wang
,
S.
,
Hsieh
,
S.-Y.
, and
Yang
,
V.
, 2001, “
Numerical Simulation of Gas-Turbine Swirl-Stabilized Injector Dynamics
,” AIAA 2001-0334.
14.
Bissieres
,
D.
, 1998, “
Final Report on the Design with Numerical Simulation of the MAKLIA DLN Combustor
,” Turbomeca Technical Report No. 13294.
15.
Midgley
,
K.
,
Spencer
,
A.
, and
McGuirk
,
J. J.
, 2003, “
PIV Measurements of Confined Swirling Flow
,” in
Proceedings of the 3rd TSFP Symposium
,
Sendai
, Japan.
16.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1992, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
0003-6994,
49
, pp.
191
215
.
17.
La Vision GmbH, 2000, “
PIV Flowmaster Manual
.”
18.
Host-Madsen
,
A.
, and
Neilson
,
A. H.
, 1998, “
Accuracy of PIV Measurements in Turbulent Flows
,” in
Proceedings of the 7th European Symposium on Particle Characterisation
,
Nurnberg
, G.
19.
Hollis
,
D.
, 2004, “
Particle Image Velocimetry in Gas Turbine Combustor Flow Fields
,” PhD thesis, Laughborough University, UK.
20.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z.-C.
, 2000, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
0723-4864,
29
, pp.
275
290
.
21.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
, 2002, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
1422
1429
.
22.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
23.
Janus
,
B.
,
Dreizler
,
A.
, and
Janicka
,
J.
, 2004, “
Flow field and Structure of Swirl Stabilized Non-Premixed Natural Gas Flames at Elevated Pressure
,” ASME GT-2004-53340.
You do not currently have access to this content.