Alloy selection and alloy design both require consideration of an array of material attributes, including in-service properties, weldability, and fabricability. Critical properties of modern heat-resistant alloys for gas turbine applications include high-temperature strength, thermal stability, oxidation resistance, and fatigue resistance. In this paper, the properties of 12 solid-solution-strengthened and six age-hardenable heat-resistant alloys are compared. Weldability is an important attribute and can be a major limiting factor in the use of certain alloys. Weldability test methods are discussed, and the resistance of alloys to solidification cracking and strain-age cracking is compared. The use of weldability testing in the development of modern heat-resistant alloys is discussed with several examples cited. Finally, alloy selection for gas turbine components is outlined, taking into account both alloy properties and fabricability.

1.
Klarstrom
,
D. L.
, and
Lai
,
G. Y.
, 1988, “
Effects of Aging on the Low Cycle Fatigue Behavior of Three Solid-Solution-Strengthened Superalloys
,”
Superalloys 1988
,
S.
Reichman
et al.
(eds.),
TMS
, pp.
585
594
.
2.
Srivastava
,
S. K.
, 1996, Haynes International Technical Report No. 13866.
3.
Lepkowski
,
W. J.
,
Monroe
,
R. E.
, and
Rieppel
,
P. J.
, 1960, “
Studies on Repair Welding Age-Hardenable Nickel-Base Alloys
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
39
(
9
), pp.
392s
400s
.
4.
Weiss
,
S.
,
Hughes
,
W. P.
, and
Macke
,
H. J.
, 1962, “
Welding Evaluation of High Temperature Sheet Materials by Restrained Patch Testing
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
41
(
1
), pp.
17s
22s
.
5.
Thompson
,
G.
,
Nunez
,
S.
, and
Prager
,
M.
, 1968, “
Practical Solutions to Strain-Age Cracking of Rene 41
,
Weld. J. (Miami, FL, U. S.)
0043-2296,
47
(
7
), pp.
299s
313s
.
6.
Lin
,
W.
, 2000, “
A Methodology for Quantifying Postweld Heat Treatment Cracking Susceptibility
,” abstract, 81st Annual AWS Convention, p.
158
.
7.
Norton
,
S.
, and
Lippold
,
J. C.
, 2001, “
Development of a Gleeble Based Test for Postweld Heat Treatment Cracking Susceptibility
,” abstract, 82nd Annual AWS Convention, p.
129
130
.
8.
Fawley
,
R. W.
,
Prager
,
M.
,
Carlton
,
J. B.
, and
Sines
,
G.
, 1970, “
Recent Studies of Cracking During Postwelding Heat Treatment of Nickel-Base Alloys
,” WRC Bulletin No. 150, Welding Research Council, NY.
9.
Savage
,
W. F.
, and
Lundin
,
C. D.
, 1965, “
The Varestraint Test
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
44
(
10
),
433s
442s
.
10.
Goodwin
,
G. M.
, 1987, “
Development of a New Hot-Cracking Test–The Sigmajig
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
66
(
2
),
33s
38s
.
11.
Maroef
,
S.
,
Rowe
,
M. D.
, and
Edwards
,
G. R.
, 2003, “
The Effect of Silicon and Iron on the Weldability of Ni-Co-Cr-Si HR-160 Alloy
,”
Proc. of 6th Int. Trends in Welding Research Conf.
, April 15–19, 2002, Pine Mountain, GA, ASM International, Metals Park, OH.
12.
Tawancy
,
H. M.
, 1983, Haynes International Technical Report No. 11191.
13.
Ernst
,
S. C.
, 1994, “
Weldability Studies of HAYNES® 230 Alloy
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
73
(
4
):
80s
89s
.
14.
Cieslack
,
J.
,
Stephens
,
J. J.
, and
Carr
,
M. J.
, 1988, “
A Study of the Weldability and Weld Related Microstructure of Cabot Alloy 214
,”
Metall. Trans. A
0360-2133,
19A
(
3
), pp.
657
667
.
15.
Lai
,
G. Y.
,
Herchenroeder
,
R. B.
, and
Patriarca
,
C. R.
, 1994, “
Shielding Gas to Reduce Weld Hot Cracking
,” U.S. Patent 5,306,358.
16.
DuPont
,
J. N.
,
Robino
,
C. V.
, and
Marder
,
A. R.
, 1998, “
Solidification and Weldability of Nb-Bearing Superalloys
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
77
(
12
), pp.
417s
431s
.
You do not currently have access to this content.