Axisymmetric plumes of hydrogen, acetylene, or n-heptane were formed by the continuous injection of (pure or nitrogen-diluted) fuel into confined turbulent coflows of hot air. Autoignition and subsequent flame propagation was visualized with an intensified high-speed camera. The resulting phenomena that were observed include the statistically steady “random spots” regime and the “flashback” regime. It was found that with higher velocities and smaller injector diameters, the boundary between random spots and flashback shifted to higher air temperatures. In the random spots regime the autoignition regions moved closer to the injector with increasing air temperature and/or decreasing air velocity. After a localized explosive autoignition event, flames propagated into the unburnt mixture in all directions and eventually extinguished, giving rise to autoignition spots of mean radii of 25mm for hydrogen and 610mm for the hydrocarbons. The average flame propagation velocity in both the axial and radial directions varied between 0.5 and 1.2 times the laminar burning speed of the stoichiometric mixture, increasing as the autoigniting regions shifted upstream.

1.
Markides
,
C. N.
, and
Mastorakos
,
E.
, 2005, “
An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
883
891
.
2.
Markides
,
C. N.
, 2005, “
Autoignition in Turbulent Flows
,” Ph.D. thesis, University of Cambridge, Cambridge, U.K.
3.
Markides
,
C. N.
,
De Paola
,
G.
, and
Mastorakos
,
E.
, 2007, “
Measurements and Simulations of Mixing and Autoignition of an N-Heptane Plume in a Turbulent Flow of Heated Air
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
393
401
.
4.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
, 1979, “
Ignition and Flame Quenching of Flowing Heterogeneous Fuel-Air Mixtures
,”
Combust. Flame
0010-2180,
35
, pp.
155
168
.
5.
Kaminski
,
C. F.
,
Hult
,
J.
,
Aldén
,
M.
,
Lindenmaier
,
S.
,
Dreizler
,
A.
,
Mass
,
U.
, and
Baum
,
M.
, 2000, “
Spark Ignition of Turbulent Methane/Air Mixtures Revealed by Time-Resolved Planar Laser-Induced Fluorescence and Direct Numerical Simulations
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
399
405
.
6.
Ko
,
Y. S.
, and
Chung
,
S. H.
, 1999, “
Propagation of Unsteady Tribrachial Flames in Laminar Non-premixed Jets
,”
Combust. Flame
0010-2180,
118
, pp.
151
163
.
7.
Ahmed
,
S. F.
, and
Mastorakos
,
E.
, 2006, “
Spark Ignition of Lifted Turbulent Jet Flames
,”
Combust. Flame
0010-2180,
146
, pp.
215
231
.
8.
Mastorakos
,
E.
,
Baritaud
,
T. B.
, and
Poinsot
,
T. J.
, 1997, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
0010-2180,
109
, pp.
198
223
.
9.
Edwards
,
C. F.
,
Siebers
,
D. L.
, and
Hoskin
,
D. H.
, 1992, “
A Study of the Autoignition Process of a Diesel Spray Via High Speed Visualization
,”
SAE Tech. Pap. Ser.
0148-7191,
920108
, pp.
1
18
.
10.
Arnold
,
A.
,
Dinkelacker
,
F.
,
Heitzmann
,
T.
,
Monkhouse
,
P.
,
Schäfer
,
M.
,
Sick
,
V.
,
Wolfrum
,
J.
,
Hentschel
,
W.
, and
Schindler
,
K.-P.
, 1992, “
Di Diesel Engine Combustion Visualized by Combined Laser Techniques
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
24
, pp.
1605
1612
.
11.
Murase
,
E.
,
Hanada
,
K.
,
Miyaura
,
T.
, and
Ikeda
,
J.
, 2005, “
Photographic Observation and Emission Spectral Analysis of Homogeneous Charge Compression Ignition Combustion
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
1699
1723
.
12.
Markides
,
C. N.
, and
Mastorakos
,
E.
, 2006, “
Measurements of Scalar Dissipation in a Turbulent Plume With Planar Laser-Induced Fluorescence of Acetone
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
2835
2842
.
13.
ROTEXO GmbH & Co. KG
, 2005, COSILAB: The Combustion Simulation Laboratory-Version 1.2.3, Haan, Germany, http://www.SoftPredict.comhttp://www.SoftPredict.com
14.
Connaire
,
M. O.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2004, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
603
622
.
15.
Held
,
T. J.
,
Marchese
,
A. J.
, and
Dryer
,
F. L.
, 1997, “
A Semi-Empirical Reaction Mechanism for N-Heptane Oxidation and Pyrolysis
,”
Combust. Sci. Technol.
0010-2202,
123
, pp.
107
146
.
16.
Laskin
,
A.
, and
Wang
,
H.
, 1999, “
On Initiation Reactions of Acetylene Oxidation in Shock Tubes. A Quantum Mechanical and Kinetic Modeling Study
,”
Chem. Phys. Lett.
0009-2614,
303
, pp.
43
49
.
17.
Glassman
,
I.
, 1996,
Combustion
,
Academic
,
San Diego
, pp.
163
and
581
587
.
You do not currently have access to this content.