The introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore research and development work at the Graz University of Technology since the 1990s has led to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen which enables the cost-effective separation of the combustion CO2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than for modern combined cycle plants. Upon the basis of the previous work, the authors present the design concept for a large power plant of 400 MW net power output making use of the latest developments in gas turbine technology. The Graz Cycle configuration is changed, insofar as condensation and separation of combustion generated CO2 takes place at the 1 bar range in order to avoid the problems of condensation of water out of a mixture of steam and incondensable gases at very low pressure. A final economic analysis shows promising CO2 mitigation costs in the range of $20–30/ton CO2 avoided. The authors believe that they present here a partial solution regarding thermal power production for the most urgent problem of saving our climate.

1.
Gas Turbine World
, 1998,
Pemex Injection for Cantarell Field EOR
,
Pequot Publishing Inc.
2.
Jericha
,
H.
, 1985, “
Efficient Steam Cycles With Internal Combustion of Hydrogen and Stoichiometric Oxygen for Turbines and Piston Engines
,”
CIMAC Conference Paper
No. T13, Oslo, Norway.
3.
Jericha
,
H.
,
Sanz
,
W.
,
Woisetschläger
,
J.
, and
Fesharaki
,
M.
, 1995, “
CO2-Retention Capability of CH4∕O2-Fired Graz Cycle
,”
CIMAC Conference Paper
, Interlaken, Switzerland.
4.
Jericha
,
H.
, and
Fesharaki
,
M.
, 1995, “
The Graz Cycle—1500°C Max Temperature Potential H2-O2 Fired CO2 Capture With CH4-O2 Firing
,” ASME Paper No. 95-CTP-79.
5.
Jericha
,
H.
,
Lukasser
,
A.
, and
Gatterbauer
,
W.
, 2000, “
Der Graz Cycle für Industriekraftwerke gefeuert mit Brenngasen aus Kohle- und Schwerölvergasung
” (in German), VDI Berichte 1566,
VDI Conference
Essen, Germany.
6.
Jericha
,
H.
, and
Göttlich
,
E.
, 2002, “
Conceptual Design for an Industrial Prototype Graz Cycle Power Plant
,” ASME Paper No. 2002-GT-30118.
7.
Jericha
,
H.
,
Göttlich
,
E.
,
Sanz
,
W.
, and
Heitmeir
,
F.
, 2004, “
Design Optimisation of the Graz Cycle Prototype Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
733
740
.
8.
Heitmeir
,
F.
,
Sanz
,
W.
,
Göttlich
,
E.
, and
Jericha
,
H.
, 2003, “
The Graz Cycle—A Zero Emission Power Plant of Highest Efficiency
,”
XXXV Kraftwerkstechnisches Kolloquium
, Dresden, Germany.
9.
Jericha
,
H.
,
Sanz
,
W.
,
Pieringer
,
P.
,
Göttlich
,
E.
, and
Erroi
,
P.
, 2004, “
Konstruktion der ersten Stufe der HTT-Gasturbine für den Graz Cycle
” (in German), VDI Berichte 1857, VDI Tagung “Stationäre Gasturbinen: Fortschritte und Betriebserfahrungen,” Leverkusen, Germany.
10.
Sanz
,
W.
,
Jericha
,
H.
,
Moser
,
M.
, and
Heitmeir
,
F.
, 2005, “
Thermodynamic and Economic Investigation of an Improved Graz Cycle Power Plant for CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
765
772
.
11.
Sanz
,
W.
,
Jericha
,
H.
,
Luckel
,
F.
, and
Heitmeir
,
F.
, 2005, “
A Further Step Towards a Graz Cycle Power Plant for CO2 Capture
,” ASME Paper No. GT2005–68456.
12.
Karl
,
J.
, and
Hein
,
D.
, 1999, “
Effect of Spontaneous Condensation on Condensation Heat Transfer in the Presence of Non Condensable Gases
,”
Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference
,
San Diege, CA
.
13.
Jericha
,
H.
, and
Sanz
,
W.
, 2001, “
Wärmekraftanlagen mit Verbrennung von Kohlenwasserstoffen mit reinem Sauerstoff zur Stromerzeugung bei Rückhaltung von Kohlendioxyd
” (in German), Austrian Patent No. AT 409 162 B.
14.
Jericha
,
H.
,
Sanz
,
W.
, and
Göttlich
,
E.
, 2006, “
Design Concept for Large Output Graz Cycle Gas Turbines
,” ASME Paper No. GT2006-90032.
15.
Benvenuti
,
E.
, 1997, “
Design and Test of a New Axial Compresssor for the Nuovo Pignone Heavy-Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
633
639
.
16.
Hennecke
,
D. K.
, 1997,
Transsonik-Verdichter-Technologien für stationäre Gasturbinen und Flugtriebwerke
(in German), Festschrift zum Jubiläum 100 Jahre Turbomaschinen TU-Darmstadt,
TU-Darmstadt
,
Darmstadt, Germany
.
17.
Perz
,
E.
,
Gasteiger
,
G.
,
Steinrück
,
P.
,
Mader
,
O.
, and
Jericha
,
H.
, 1988, “
Design of a 50MW Pilot Plant for a High Efficiency Steam Cycle
,” ASME Paper No. 88-GT-154.
18.
Zerlauth
,
F.
, 1986, “
Sulzer Gasturbinen-Konstruktionen
” (in German),
Conference on Turbomachinery Developments
, Graz University of Technology, Graz, Austria.
19.
Göttlich
,
E.
,
Neumayer
,
F.
,
Pieringer
,
P.
,
Woisetschläger
,
J.
,
Sanz
,
W.
, and
Heitmeir
,
F.
, 2004, “
Investigation of Stator-Rotor Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Pneumatic Probes
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
297
305
.
20.
Göttlich
,
E.
,
Lang
,
H.
,
Sanz
,
W.
, and
Woisetschläger
,
J.
, 2002, “
Experimental Investigation of an Innovative Cooling System (ICS) for High Temperature Transonic Turbine Stages
,” ASME Paper No. 2002-GT-30341.
21.
Göttlich
,
E.
,
Innocenti
,
L.
,
Vacca
,
A.
,
Sanz
,
W.
,
Woisetschläger
,
J.
,
Facchini
,
B.
,
Jericha
,
H.
, and
Rossi
,
E.
, 2004, “
Measurement and Simulation of a Transonic Innovative Cooling System (ICS) for High-Temperature Transonic Gas Turbine Stages
,” ASME Paper No. GT2004-53712.
22.
Chorpening
,
B. T.
,
Casleton
,
K. H.
, and
Richards
,
G. A.
, 2003, “
Stoichiometric Oxy-Fuel Combustion for Power Cycles With CO2 Sequestration
,”
Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute
,
Chicago, IL
.
23.
Inoue
,
H.
,
Kobayashi
,
N.
, and
Koganezawa
,
T.
, 2001,
Research and Development of Methane-Oxygen Combustor for Carbon Dioxide Recovery Closed-Cycle Gas Turbine
, CIMAC Conference Paper,
Hamburg, Germany
.
24.
Göttlicher
,
G.
, 1999, “
Energetik der Kohlendioxidrückhaltung in Kraftwerken
,” (in German), VDI Fortschritt-Berichte ,
VDI Verlag
,
Düsseldorf
, Reihe 6, Energietechnik, No. 421.
25.
Gas Turbine World
, 2003,
2003 Handbook for Project Planning, Design and Construction
,
Pequot Publishing Inc.
You do not currently have access to this content.