In this paper, the development of an eight-step global chemical kinetic mechanism for methane oxidation with nitric oxide formation in lean-premixed combustion at elevated pressures is described and applied. In particular, the mechanism has been developed for use in computational fluid dynamics and chemical reactor network simulations of combustion in lean-premixed gas turbine engines. Special attention is focused on the ability of the mechanism to predict NOx and CO exhaust emissions. Applications of the eight-step mechanism are reported in the paper, all for high-pressure, lean-premixed, methane-air (or natural gas-air) combustion. The eight steps of the mechanism are as follows: (1) oxidation of the methane fuel to CO and H2O, (2) oxidation of the CO to CO2, (3) dissociation of the CO2 to CO, (4) flame-NO formation by the Zeldovich and nitrous oxide mechanisms, (5) flame-NO formation by the prompt and NNH mechanisms, (6) postflame-NO formation by equilibrium H-atom attack on equilibrium N2O, (7) postflame-NO formation by equilibrium O-atom attack on equilibrium N2O, and (8) postflame Zeldovich NO formation by equilibrium O-atom attack on N2.

1.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
, 1981,
Combust. Sci. Technol.
0010-2202,
27
, pp.
31
43
.
2.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
, 1984,
Prog. Energy Combust. Sci.
0360-1285,
10
, pp.
1
57
.
3.
DuPont
,
V.
,
Pourkashanian
,
M.
, and
Williams
,
A.
, 1993,
J. Inst. Energy
0144-2600,
66
, p.
20
.
4.
Hautman
,
D. J.
,
Dryer
,
F. L.
,
Schug
,
K. P.
, and
Glassman
,
I.
, 1981,
Combust. Sci. Technol.
0010-2202,
25
, pp.
219
235
.
5.
Nicol
,
D. G.
,
Malte
,
P. C.
,
Hamer
,
A. J.
,
Roby
,
R. J.
, and
Steele
,
R. C.
, 1999,
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
272
280
.
6.
Novosselov
,
I. V.
, 2006, “
Chemical Reactor Network Modeling of Combustion Systems
,” Ph.D. thesis, University of Washington, Seattle, WA. (This may be accessed online at the address www.energy.washington.eduwww.energy.washington.edu, denoting “laboratory,” followed by “publications.”)
7.
Magnussen
,
B. F.
, and
Hjetager
,
B. H.
, 1977, “
On Mathematical Models of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Proceedings of the 16th Symposium (International) on Combustion
, The Combustion Institute,
Pittsburgh, PA
, pp.
719
729
.
8.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
9.
Rutar-Shuman
,
T.
, 2000, “
NOx and CO Formation for Lean-Premixed Methane-Air Combustion in a Jet-Stirred Reactor Operated at Elevated Pressure
,” Ph.D. thesis, University of Washington, Seattle, WA.
10.
Bengtsson
,
K. U. M.
, 1998, “
Experimental and Numerical Study of the NOx Formation in High-Pressure Lean Premixed Combustion of Methane
,” Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.
11.
Rutar
,
T.
, and
Malte
,
P. C.
, 2002,
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
776
783
.
13.
Novosselov
,
I. V.
, 2002, “
Eight-Step Global Kinetic Mechanism of Methane Oxidation With Nitric Oxide Formation for Lean Premixed Combustion Turbines
,” MSME thesis, University of Washington, Seattle, WA. (This may be accessed online at the address www.energy.washington.eduwww.energy.washington.edu, denoting “laboratory,” followed by “publications.”)
14.
Konnov
,
A. A.
, and
De Ruyck
,
J.
, 2001,
Combust. Flame
0010-2180,
125
, p.
1258
.
15.
Polifke
,
W.
,
Dobbeling
,
K.
,
Sattelmayer
,
T.
,
Nicol
,
D. G.
, and
Malte
,
P. C.
, 1996,
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
118
, pp.
765
772
.
16.
Bucher
,
J.
,
Edmonds
,
R. G.
,
Steele
,
R. C.
,
Kendrick
,
D. W.
,
Chenevert
,
B. C.
, and
Malte
,
P. C.
, 2003, “
The Development of a Lean-Premixed Trapped Vortex Combustor
,” ASME Paper No. GT-2003-38236.
17.
Leonard
,
G.
, and
Stegmaier
,
J.
, 1994,
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
542
546
.
18.
Novosselov
,
I. V.
,
Malte
,
P. C.
,
Yuan
,
S.
,
Srinivasan
,
R.
, and
Lee
,
J. C. Y.
, 2006, “
Chemical Reactor Network Application to Emissions Prediction for Industrial DLE Gas Turbine
,” ASME Paper No. GT2006-90282.
You do not currently have access to this content.