An entire family of twisted and tapered low pressure steam turbine fast rotating condensation blading (SK) blades with pinned radial root and loosely assembled conical bolts is designed by scaling the aerodynamic and mechanical properties of the smallest airfoil. For SK blades operating with variable speed, the friction bolts, mounted in the upper airfoil part, provide either damping or coupling capabilities for the blades with respect to resonance conditions. The damping and coupling performance have been proven experimentally in the test rig of the real turbine. The measurements of the smallest SK-disk assembly under different operating conditions have allowed us to understand the dynamic and damping behavior of the bolts that are either friction dampers or coupling devices for the vibrating blades depending on the excitation level. In this paper, nonlinear dynamic analyses of the smallest and large SK-turbine stage are performed and compared with the experimental data. The modal blade dynamics is defined by 30 complex finite element (FE) mode shapes of the freestanding blades coupled by the disk whereby the bolt’s motion is described by six rigid body modes. The sticking contact condition between the blades and bolts is represented by the normal and tangential contact stiffnesses. These values are firstly estimated analytically with Hertz’s formulas for the FE reaction forces and contact areas. More realistic contact stiffness values are obtained from the iterative process, in which the resonance frequencies are calculated with the steady-state simulations and compared to the FE nodal diameter curves for sticking contact conditions that meet the experimental frequencies very well (Szwedowicz, J. et al., 2007, “Scaling Concept for Axial Turbine Stages With Loosely Assembled Friction Bolts: The Linear Dynamic Assessment Part 1,” Proceedings of ASME Turbo Expo 2007, Montreal, Canada, May 14–17, ASME Paper No. GT2007-27502). In nonlinear simulations, in case of exceeding the sticking contact condition, the induced friction forces are linearized by the harmonic balance method. In this manner, the microslipping and sticking contact behavior at all contact points are calculated iteratively for the specified excitation amplitudes, friction coefficient, contact roughness, and aerodamping values that are known from the experiment. The computed results of the tuned smallest SK blades agree with the experimental resonance stresses of 12 measured blades. Differences between the computed and measured stresses are caused by mistuning, which was not quantified in the experiment. The nonlinear dynamic analyses provide evidence of good damping performance for the smallest and large SK blades with respect to a wide range of excitation forces, different friction coefficients, and various aerodynamic damping values. For the analyzed resonances of the eighth engine order, the scalability of damping performance is found for the SK blades of different sizes.

1.
Truckenmüller
,
F.
, 2003, “
Untersuchungen Zur Aerodynamische Induzierten Schwingungsanregung Von Niederdruck-Laufschauflen Bei Extremer Teillast
,” Ph.D. thesis, Thermische Strömungsmaschinen, Universität Stuttgart.
2.
Ewins
,
D. J.
, 1973, “
Vibration Characteristics of Bladed Disc Assemblies
,”
J. Mech. Eng. Sci.
0022-2542,
15
(
3
), pp.
165
186
.
3.
Griffin
,
J. H.
, and
Labelle
,
R. F.
, 1996, “
A Rational Method for Optimizing Shrouded Damping
,” ASME Paper No. 96-GT-402.
4.
Srinivasan
,
A. V.
, 1997, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,” ASME Paper No. 97-GT-533.
5.
Huang
,
W.-H.
, 1981, “
Free and Forced Vibration of Closely Coupled Turbomachinery Blades
,”
AIAA J.
0001-1452,
19
(
7
), pp.
918
924
.
6.
Urlichs
,
K.
, 1991, “
Schwingunssichere Auslegung Gebundener Turbinschaufeln
,”
AIAA J.
0001-1452,
71
(
12
), pp.
1108
1112
.
7.
Filsinger
,
D.
,
Szwedowicz
,
J.
, and
Schäfer
,
O.
, 2002, “
Approach to Unidirectional Coupled CFD-FEM Analysis of Axial Turbocharger Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
125
131
.
8.
Borishanskii
,
K.
, 1974, “
Characteristics of the Vibrations of Blades With Bandage Shelves
,”
Problemy Prochnosti
,
9
, pp.
97
102
, in Russian.
9.
Namura
,
K.
,
Siato
,
E.
, and
Okabe
,
A.
, 1996, “
A Method for Calculating the Natural Frequencies of Continuous Blade Structures With Three Different Types of Loose Coupling Means
,”
Proceedings of the Institution of Mechanical Engineers
, Paper No. C500/051IMechE.
10.
Szwedowicz
,
J.
,
Secall-Wimmel
,
T.
,
Dünck-Kerst
,
P.
,
Sonnenschein
,
A.
,
Regnery
,
D.
, and
Westfahl
,
M.
, 2007, “
Scaling Concept for Axial Turbine Stages With Loosely Assembled Friction Bolts: The Linear Dynamic Assessment. Part I
,” ASME Paper No. GT2007-27502.
11.
Swikert
,
M. A.
, and
Johnson
,
R. L.
, 1968, “
Friction and Wear Under Fretting Conditions of Materials for Use as Wire Friction Dampers of Compressor Blade Vibration
,” NASA Technical Note No. TN D-4630.
12.
Kellerer
,
R.
, 1994, “
Beitrag Zum Schwingungs-Verhalten Gekoppelter Axiallaufschaufeln Unter Berück-Sichtigung Der Radscheibenelastizität
,” Ph.D. thesis, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
13.
Beckbissinger
,
L.
, 1982, “
Schwingungsuntersuchungen vonGekoppelten Turbinenlaufschaufeln Bei Verschiedenen Betriebszuständen“
,” MS thesis D-54-82, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
14.
Jaiswal
,
B. L.
,
Goyal
,
S. K.
, and
Bhave
,
S. K.
, 1993, “
Dynamic Analysis of Turbine Blade With Damping Pins
,”
Proceedings of the 11th International Modal Analysis Conference
,
Kissimmee, FL
, SPIE Vol.
1923
, pp.
1544
1549
.
15.
Jaiswal
,
B. L.
, and
Bhave
,
S. K.
, 1994, “
Experimental Evaluation of Damping in a Bladed Disc Model
,”
J. Sound Vib.
0022-460X,
177
(
1
), pp.
111
120
.
16.
Wachter
,
J.
,
Pfeiffer
,
R.
, and
Jarosch
,
J.
, 1983, “
Experimental Study to Gain Insight in the Vibration Characteristics of a Steam Turbine LP-Wheel With Lashing Pins
,”
ASME Proceedings on the Vibration of Bladed Disk Assemblies
,
Dearborn, MI
, Sept. 11–14, pp.
83
89
.
17.
Sextro
,
W.
, 2002, “
Dynamical Contact Problems With Friction: Models, Methods, Experiments and Applications
,”
Lecture Notes in Applied Mechanics
,
Springer-Verlag
,
Berlin
, Vol.
3
.
18.
Petrov
,
E. P.
, 2006, “
Direct Parametric Analysis of Resonance Regimes For Nonlinear Vibrations of Bladed Discs
,” ASME Paper No. GT2006-90147.
19.
Szwedowicz
,
J.
,
Kissel
,
M.
,
Ravindra
,
B.
, and
Keller
,
R.
, 2001, “
Estimation of Contact Stiffness and its Role in the Design of a Friction Damper
,” ASME Paper No. 2001-GT-0290.
20.
Szwedowicz
,
J.
,
Slowik
,
S.
,
Mahler
,
A.
, and
Hulme
,
C. J.
, 2005, “
Nonlinear Dynamic Analyses of a Gas Turbine Blade for Attainment of Reliable Shroud Coupling
,” ASME Paper No. GT2005-69062.
21.
Szwedowicz
,
J.
,
Sextro
,
W.
,
Visser
,
R.
, and
Masserey
,
P. A.
, 2003, “
On Forced Vibration of Shrouded Turbine Blades
,” ASME Paper GT-2003-38808.
22.
Figurski
,
H.
, 1981, “
Schwingungsuntersuchung an Einem Realen Endstufenschaufelpaket Mit Eingelegten Dämpferelementen
,” Studienarbeit, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
23.
Jarosch
,
J.
, 1983, “
Beitrag Zum Schwingungsverhalten Gekoppelter Schaufelsystem
,” Ph.D. thesis, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
24.
Pfeiffer
,
R.
, 1985, “
Einfluss Unterschiedlicher Paketier-Ungen Auf Schwingungs-Verhalten Und Verbundfaktoren Von Dampfturbinen-Beschaufelungen
,” Ph.D. thesis, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
25.
Wolter
,
I.
, 1980, “
Experimentelle Untersuchung Des Schwingungsverhaltens Von Turbinenlaufschaufeln Unter Realen Betriebsbedingungen Mit Und Ohne Kopplung Durch Einen Eingelegten Dämpferdraht
,” Ph.D thesis, Institut für Thermische Strömungsmaschinen, Universität Stuttgart.
26.
Traupel
,
W.
, 1982,
Termische Turbomaschinen
, 3rd ed.,
Springer-Verlag
,
New York
.
27.
Treyde
,
T.
, 1994, “
Koppeldaempfungen Und-Steifigkeiten Zwischen Den Kontakflaechen Der Deckplatten Von Laufschaufeln (Contact Damping and Stiffness Between the Interfaces of the Shrouds of Rotating Turbine Blades
,” FVV Report No. 525, BMWi/AIF Report No. 8803.
28.
Siewert
,
C.
,
Panning
,
L.
,
Schmidt-Fellner
,
A.
, and
Kayser
,
A.
, 2006, “
The Estimation of the Contact Stiffness for Directly and Indirectly Coupled Turbine Blading
,” ASME Paper No. GT2006-904-73.
29.
Szwedowicz
,
J.
,
Gibert
,
C.
,
Sommer
,
T. P.
, and
Kellerer
,
R.
, 2006, “
Numerical and Experimental Damping Assessment of Thin-Walled Friction Dampers in the Rotating Set-up With High Pressure Turbine Blades
,” ASME Paper No. GT2006–9-0951.
30.
Berutti
,
T.
,
Filippi
,
S.
,
Goglio
,
L.
,
Gola
,
M. M.
, and
Salvano
,
S.
, 2002, “
A Test Rig for Frictionally Damped Bladed Segments
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
388
394
.
31.
Koh
,
K.-H.
, and
Griffin
,
J. H.
, 2006, “
Dynamic Behaviour of Spherical Friction Dampers and its Implication to Damper Contact Stiffness
,” ASME Paper No. GT2006-90102.
32.
Balmer
,
B.
, 1993, “
Erhöhung Der Dämpfung Von Turbinenschaufeln Durch Reibelemente
,” Fortschritts-Berichte VDI, Reihe 11, Nr. 197, VDI-Verlag, Düsseldorf.
33.
Lampert
,
P.
,
Szymaniak
,
M.
, and
Rzadkowski
,
R.
, 2004, “
Unsteady Load of Partial Admission Control Stage Rotor of a Large Power Steam Turbine
,” ASME Paper No. GT2004-53886.
34.
Lazan
,
B. J.
, 1968,
Damping Materials and Members in Structural Mechanics
,
Pregammon
,
New York
.
35.
Li
,
H. D.
, and
He
,
L.
, 2005, “
Blade Aerodynamic Damping Variation With Rotor-Stator Gap: A Computational Study Using Single-Passage Approach
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
573
579
.
36.
Brown
,
W. G.
, 1981, “
Determination of Damping Values for Turbine Blades
,” ASME Paper No. 81-DET-131.
37.
Kielb
,
J. J.
, and
Abhari
,
R. S.
, 2003, “
Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
102
112
.
38.
Matveev
,
V. V.
,
Chaikoskii
,
B. S.
, and
Rzhavin
,
L. N.
, 1970, “
Damping Capacity of the Hinged Locking Joint of Turbomachine Compressor Blades (in Russian)
,”
Problemy Prochnosti
,
12
, pp.
106
109
.
39.
Figurski
,
H.
, 1982, “
Schwingungsuntersuchungen Von Gekoppelten Turbinenlauf-Schaufeln Bei Verschiedenen Betriebszuständen
,” MS thesis, Institut für Thermische Strömungsmaschinen, Unniversitä Stuttgart.
You do not currently have access to this content.