Abstract

This paper describes the modeling of typical secondary air system elements such as rotating orifices, seals, and flow passages with heat and work transfer from the surrounding surfaces. The modeling is carried out in an object-oriented simulation environment that allows the creation of different configurations in a simple and flexible manner. This makes possible to compare the performance between different designs of individual components or complete secondary air systems as well as integrate them directly in whole engine performance models. The modeling is validated against published experimental data and computational results. An example of implementation in an engine model is also presented.

1.
Smout
,
P. D.
,
Chew
,
J. W.
, and
Childs
,
P. R. N.
, 2002, “
ICAS-GT: A European Collaborative Research Programme on Internal Cooling Air Systems for Gas Turbines
,” ASME Paper No. GT-2002-30479.
2.
Chew
,
J. W.
,
Hills
,
N. J.
,
Khalatov
,
S.
,
Scanlon
,
T.
, and
Turner
,
A. B.
, 2003, “
Measurement and Analysis of Flow in a Pre-Swirled Cooling Air Delivery System
,” ASME Paper No. GT-2003-38084.
3.
Bohn
,
D.
, and
Wolff
,
M.
, 2003, “
Improved Formulation to Determine Minimum Sealing Flow—Cw,min—for Different Sealing Configurations
,” ASME Paper No. GT-2003-38465.
4.
Chew
,
J. W.
, and
Hills
,
N. J.
, 2007, “
Computational Fluid Dynamics for Turbomachinery Internal Air Systems
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
2587
2611
.
5.
Foley
,
A.
, 2001, “
On the Performance of Gas Turbine Secondary Air Systems
,” ASME Paper No. GT-2001-0199.
6.
Theodorsen
,
T.
, and
Regier
,
A.
, 1945, “
Experiments on Drag of Revolving Discs, Cylinders and Streamline Rods at High Speeds
,”
NACA
Report No. 793.
7.
Yan
,
Y.
,
Farzaneh-Gord
,
M.
,
Lock
,
G.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Fluid Dynamics of a Pre-Swirled Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
641
647
.
8.
Hay
,
N.
, and
Lampard
,
D.
, 1998, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
314
319
.
9.
Idris
,
A.
, and
Pullen
,
K. R.
, 2005, “
Correlations for the Discharge Coefficient of Rotating Orifices Based on the Incidence Angle
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
219
, pp.
333
352
.
10.
Morrison
,
G. L.
,
Rhode
,
D. L.
,
Cogan
,
K. C.
,
Chi
,
D.
, and
Demko
,
J.
, 1983, “
Labyrinth Seals for Incompressible Flow
,” Final Report No. NASA-CR-170938.
11.
Childs
,
P. R. N.
, 1998,
Mechanical Design
,
Arnold
,
London
.
13.
Alexiou
,
A.
, and
Mathioudakis
,
K.
, 2005, “
Development of Gas Turbine Performance Models Using a Generic Simulation Tool
,” ASME Paper No. GT-2005-68678.
14.
Alexiou
,
A.
, and
Mathioudakis
,
K.
, 2006, “
Gas Turbine Engine Performance Model Applications Using an Object-Oriented Simulation Tool
,” ASME Paper No. GT-2006-90339.
15.
Bala
,
A.
,
Sethi
,
V.
,
Lo Gato
,
E.
,
Pachidis
,
V.
, and
Pilidis
,
P.
, 2007, “
PROOSIS—A Collaborative Venture for Gas Turbine Performance Simulation Using an Object Oriented Programming Schema
,” Report No. ISABE-2007-1357.
16.
Alexiou
,
A.
,
Baalbergen
,
E. H.
,
Kogenhop
,
O.
,
Mathioudakis
K.
, and
Arendsen
,
P.
, 2007, “
Advanced Capabilities for Gas Turbine Engine Performance Simulations
,” ASME Paper No. GT-2007-27086.
17.
Farzaneh-Gord
,
M.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Numerical and Theoretical Study of Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System
,” ASME Paper No. GT-2005-68135.
18.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G.
, and
Owen
,
J. M.
, 2006, “
Physical Interpretation of Flow and Heat Transfer in Pre-Swirl Systems
,” ASME Paper No. GT-2006-90132.
19.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
, 2004, “
Cooling Air Temperature Reduction in a Direct Transfer Pre-Swirl System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
4
), pp.
809
815
.
20.
Long
,
C. A.
,
Alexiou
,
A.
, and
Smout
,
P. D.
, 2003, “
Heat Transfer in H. P. Compressor Gas Turbine Internal Air Systems: Measurements From the Peripheral Shroud of a Rotating Cavity With Axial Throughflow
,”
2nd International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT-2003
.
21.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C. A.
,
Turner
,
A. B.
, and
Millward
,
J. A.
, 2000, “
Heat Transfer in H. P. Compressor Gas Turbine Internal Air Systems: A Rotating Disc-Cone Cavity With Axial Throughflow
,”
Exp. Heat Transfer
0891-6152,
13
, pp.
299
328
.
22.
Alexiou
,
A.
,
Long
,
C. A.
,
Turner
,
A. B.
, and
Barnes
,
C. J.
, 2001, “
Thermal Modelling of a Rotating Cavity Rig to Simulate the Internal Air System of a Gas Turbine H. P. Compressor
,”
5th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT-5, III
, pp.
2387
2392
.
23.
Long
,
C. A.
, 1999,
Essential Heat Transfer
,
Longman
,
London
.
24.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2005, “
Direct-Transfer Pre-Swirl System: A One-Dimensional Modular Characterization of the Flow
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
383
388
.
25.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C. A.
,
Turner
,
A. B.
,
Wong
,
L. S.
, and
Millward
,
J. A.
, 2000, “
Discharge Coefficients for Flow Through Holes Normal to a Rotating Shaft
,”
Int. J. Heat Fluid Flow
,
21
, pp.
701
709
. 0142-727X
26.
Idris
,
A.
,
Pullen
,
K. R.
, and
Read
,
R.
, 2004, “
The Influence of Incidence Angle on the Discharge Coefficient for Rotating Radial Orifices
,” ASME Paper No. GT-2004-53237.
28.
Filomeno Coelho
,
R.
,
Pierret
,
S.
, and
Cobas
,
P.
, 2006, “
Multi-Objective Evolutionary Algorithms Applied to Aircraft Engine Design
,”
25th Congress of the International Council of Aeronautical Sciences, ICAS-2006
.
You do not currently have access to this content.